共查询到20条相似文献,搜索用时 15 毫秒
1.
Wan-Chung Lee Anthony T. Dibenedetto Jack M. Gromek M. R. Nobile D. Acierno 《Polymer Engineering and Science》1993,33(3):156-165
Isothermal melt-spinning of two thermotropic liquid crystalline polymers (TLCPs), a wholly aromatic copolyester KU-9211 (also named K161 from Bayer AG) and an aliphatic containing TLCP, PET/PHB60 (Tennessee Eastman), was studied to analyze the effect of processing conditions on fiber properties. Fibers were melt-spun from a capillary rheometer equipped with an isothermal chamber in which cross-flowed air was used as the cooling medium. The processing variables studied included the extrusion temperature, the extrusion rate, the cooling conditions, and the draw ratio. As-spun fibers were characterized by measuring storage moduli and molecular orientation parameters as a function of draw ratio under various processing conditions. Among the processing variables studied, the draw ratio was the primary factor in determining both the fiber modulus and the molecular orientation. The extrusion rate did not appear to affect the fiber properties within the range studied. The properties of K161 fibers were also dependent on the extrusion and cooling temperatures, while PET/PHB60 fibers were rather insensitive to the processing temperatures within data scatter and temperatures studied. A composite model based on a rigid-rod rotation mechanism and the deformation of nematic domains in an elongational flow field was used to model the experimental results and was compared with other theories available. Conformance of data to the composite model was obtained by use of a single temperature dependent parameter n, suggesting that the rigid-rod rotation mechanism could be used to predict the orientation development of TLCPs. The Halpin-Tsai equations and the orthotropic equation for angular dependence were used to describe the elastic properties of the TLCP fibers. 相似文献
2.
Gang Li Jinghua Yin Binyao Li Guoqing Zhuang Yuming Yang L. Nicolais 《Polymer Engineering and Science》1995,35(8):658-665
Phase behavior, thermal, rheological and mechanical properties plus morphology have been studied for a binary polymer blend. The blend is phenolphthalein polyethersulfone (PES-C) with a thermotropic liquid crystalline polymer (LCP), a condensation copolymer of p-hydroxybenzoic acid with ethylene terephthalate (PHB-PET). It was found that these two polymers from optically isotropic and homogeneous blends by means of a solvent casting method. The homogeneous blends undergo phase separation during heat treatment. However, melt mixed PES-C/PHB-PET blends were heterogeneous based upon DSC and DMA analysis and SEM examination. Addition of LCP in PES-C resulted in a marked reduction of melt viscosity and thus improved processability. Compared to pure PES-C, the charpy impact strength of the blend containing 2.5% LCP increased 2.5 times. Synergistic effects were also observed for the mechanical properties of blends containing < 10% LCP. Particulates, ribbons, and fibrils were found to be the typical morphological units of PHB-PET in the PES-C matrix, which depended upon the concentration of LCP and the processing conditions. 相似文献
3.
Blends of two thermotropic liquid crystalline polymers (LCP) based on 6-oxy-2-naphthoyl and p-oxybenzoyl moieties and p-oxybenzoyl, terephthaloyl and hydroquinone moieties have been studied. The blends were prepared by melt mixing using a twin screw extruder. Thermal, rheological, mechanical, and morphological studies were carried out. Based on the dynamic mechanical thermal analysis and the morphological observations, the blends are found to be immiscible. The viscosity ratios of pure LCP melts exceed values of 10 over a wide range of shear rates, with the viscosity of the blends lying between those of the pure components. The prepared blends are shown to be self-reinforced composites in which one LCP enhances the molecular orientation of the other. Studies of the injection molded bars by scanning electron microscopy indicate a complicated hierarchical morphology with microfibrils of submicron level in diameter, bundled, and intertwined into fibrils of a substantially larger diameter. Due to self reinforcement, impact and tensile properties of the blends show significant synergism when compared to those of the pure LCP components. The properties obtained are remarkably higher than those known for any high performance engineering thermoplastics. 相似文献
4.
5.
A. G. C. Machiels J. Van Dam A. Posthuma De Boer B. Norder 《Polymer Engineering and Science》1997,37(9):1512-1525
Breakup of fibers of a thermotropic liquid crystalline polymer (TLCP) above the melting temperature in various ordinary polymers has been studied by capillary instability experiments on single TLCP fibers and by annealing experiments on extruded TLCP/thermoplast blends. The TLCP was an aromatic copolyester, Vectra A900, the matrix polymers were PP, PS, PC, PEL PES, and PEBT. Both types of experiments show that the fiber/matrix morphology is, in general, highly unstable in the molten state. The TLCP fibers break up into droplets by a combination of Rayleigh distortions, end-pinching and retraction, depending on the system and shape of the fiber. Fibers of a thickness of ~1 μm can break up in a few seconds. Breakup times of fibrous blends and individual fibers are in agreement provided size effects are accounted for. Rayleigh distortions develop exponentially in time up to relative distortions of 0.5 to 0.6. Breakup occurs within a range of wave numbers rather than at one distinct dominant wave number, which is shown to be the consequence of relatively large initial distortions. Apparent values for the interfacial tensions calculated with Tomotika's theory turned out to be of the correct order of magnitude, ranging from 7 mN/m for Vectra/PES to 24 mN/m for Vectra/PP and to yield correct values of the interfacial tensions of PP/PS, PP/PC, and PS/PC using Antonow's rule. 相似文献
6.
Procedures for obtaining molecular orientational parameters from wide angle X-ray scattering patterns of samples of thermotropic liquid crystalline polymers are presented. The methods described are applied to an extrusion-aligned sample of a random copolyester of poly(ethylene terephthalate) (PET) and p-acetoxybenzoic acid. Values of the orientational parameters are obtained from both the interchain and intrachain maxima in the scattering pattern. The differences in the values so derived suggest some level of local rotational correlation 相似文献
7.
The crystallization and melting behavior of a DuPont ZeniteTM series, namely, Z 6000 and Z 8000B, thermotropic liquid crystalline polymer (TLCP) have been investigated by differential scanning calorimetry (DSC). Both, non‐isothermal and isothermal crystallizations were carried out. From the non‐isothermal experiments, the crystallization temperature was found to be 234°C for a cooling rate of 10°C/min whereas it was only 228°C for 40°C/min for Z 8000B, and was found to be 296°C and 290°C, respectively, for Z 6000. In the isothermal experiment both the thermal and crystallization behaviors were studied as a function of the annealing temperature and annealing time. Two types of transition processes were evidence in the low temperature region of the isothermal crystallization. One is fast transition, which may be regarded as liquid crystal transition, and is characterized by the enthalpy, which is independent of annealing time. The other is slow process, related to crystal perfection, and it shows increases in the transition temperature and enthalpy, which is dependent on annealing time. 相似文献
8.
A thermotropic liquid crystalline (LC) polymer, consisting of an LC silicone having benzoic acid phenylester LC groups as side chains of the siloxane polymer main chain diluted with dimethylsilicone, and a lyotropic LC polymer solution, consisting of poly(γ-benzyl-L -glutamate) in 1,4-dioxane, both showed a large electrorheological (ER) effect, i.e., an instantaneous increase in shear stress upon the application of an electric field. In the electric field, the thermotropic polymer exhibited Newtoman-like flow and a dynamic viscoelasticity similar to that of low molecular weight liquid crystals, while the lyotropic polymer solution exhibited elastic flow and a dynamic viscoelasticity similar to that of particle-dispersion ER fluids. These differences in ER behavior suggest large differences in their ER mechanisms, with that of the thermotropic polymer dominated by interaction between its LC domains and that of the lyotropic polymer solution by the orientation of the dipoles of its LC groups. © 1996 John Wiley & Sons, Inc. 相似文献
9.
The dielectric activity of a thermotropic side‐chain liquid crystalline polymer is analysed. The sub‐glass relaxations are deconvoluted by two different empirically based equations (Fuoss–Kirkwood and Havriliak–Negami). The conductivity contributions are studied following a methodology proposed by Macdonald and Coelho. The effects of the orientation of the mesogenic group under electrical fields are also analysed. We propose a general method to estimate the curve of loss permittivity with a determined value of Sd based on the knowledge of two experimental curves, each corresponding to one well‐known orientation. © 2001 Society of Chemical Industry 相似文献
10.
Gabor Kiss 《Polymer Engineering and Science》1987,27(6):410-423
Melt blending of a variety of conventional isotropic polymers (both crystalline and amorphous) has shown that considerable reinforcement is obtained from the inclusion of thermotropic liquid crystalline polymers (LCP). When the LCP is a minor component it forms highly elongated domains parallel to the flow direction. The intrinsically high strength and stiffness of the LCP improve the mechanical properties of the resulting blend. This approach is distinguished from the common practice of filling polymers with chopped glass and carbon fibers by the fact that the reinforcing component comes into existence during processing (molding or extrusion). Many of the problems associated with fibrous fillers are avoided. For example, viscosity of the “in situ composite” is actually lower than that of the base polymer and wear on the compounding and processing equipment is reduced. 相似文献
11.
Poly(ethylene terephthalate) (PET) and 2 thermotropic liquid crystalline polymers (LCPs) with different chain rigidity were blended to make in-situ composite fibers on a conventional melt spinning equipment. The addition of the LCP-1 (60PHB–PET) with a less rigid chain has been found to lower the orientation of the as-spun fibers while the LCP-2 (VectraA900) with whole aromatic rigid chain has a reverse effect, as evidenced from the birefringence results. Both kinds of composite fibers with 5 wt % LCP have a good drawability. There is a diffraction peak characteristic of intermolecular packing of LCP on the wide-angle X-ray diffraction curve for the as-spun fibers containing LCP-2 but not the case for LCP-1. The morphology formed during elongational flow is highly dependent on the composition and rigidity of LCP. For the dispersed phases of LCP-1, it is relatively difficult to be elongated, whereas LCP-2 dispersed phases will be easily deformed into fibrils during melt spinning. The mechanical properties of the blend fibers containing the LCP-1 component are inferior to those containing the LCP-2 component. For the fibers with discontinuous fibril morphology, a Halpin–Tsai equation could well be used to describe the elastic modulus of in-situ composite fiber with LCP-2. © 1998 John Wiley & Sons, Inc. J. Appl. Polym. Sci. 70: 1035–1045, 1998 相似文献
12.
The miscibility of thermotropic liquid crystalline polymers (TLCPs) and polyester blends was investigated with thermal and morphological analyses, as well as transesterification. TLCPs composed of 80 mol % para‐hydroxybenzoate (PHB) and 20 mol % poly(ethylene terephthalate) (PET) or 60 mol % PHB and 40 mol % PET, and polyesters such as PET and poly(ethylene 2,6‐naphthalate) (PEN) were melt blended in an internal mixer. DSC analyses were performed to investigate the thermal transition behavior and to obtain thermodynamic parameters. All the blends showed only a single glass‐transition temperature, which means they are partially miscible in the molten state. The Flory–Huggins interaction parameter was calculated employing the Nishi–Wang approach, and negative values were obtained except for the P(HB8‐ET2)/PEN blends. Transesterification was investigated using 1H‐NMR, and the change of chemical shift compared to pure PET or P(HB‐ET)s was observed in the P(HB‐ET)/PET blends. An intermediate chemical shift value (4.83 ppm) was observed in the P(HB6‐ET4)/PEN blends, which indicates transesterification occurred. The fractured surface morphology of scanning electron micrographs showed that the interfaces between the LC droplets and matrix were not distinct. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1842–1851, 2003 相似文献
13.
Dynamic rheological experiments were performed on a series of two copolymers and a homopolymer based on units of terephthaloyl chloride and isophthaloyl chloride at 90/10 and 75/25 mole ratios combined with 1,10-bis(4-hydroxyphenyl)-decane. Optical microscopy and wide angle X-ray diffraction (WAXD) confirmed that all of the polyesters in the present series formed nematic liquid crystals with nematic-to-isotropic temperatures in the range of 270 to 320°C with increasing terephthaloyl unit content. Broad nematic-to-isotropic transitions observed by differential scanning calorimetry (DSC) were indicative of biphasic regions where the nematic and isotropic phases coexist. The rheological behavior of each polymer was more complex in the nematic phase than in the isotropic phase with shear thinning occurring in the former but Newtonian behavior in the latter. There were also some indications that nematic flow behavior could be induced in these polymers by dynamic oscillatory shear flow above the nematic-to-isotropic transition, Ti. A form of hysteresis was observed with the homopolymer in that measurements of the dynamic viscosity, η*, taken with ascending frequency sweeps were higher than those taken with descending frequency sweeps. 相似文献
14.
Sauvarop Bualek-Limcharoen Jareerat Samran Taweechai Amornsakchai Wiriya Meesiri 《Polymer Engineering and Science》1999,39(2):312-320
An in-situ composite film of a thermotropic liquid crystalline polymer (LC3000)/polypropylene (TLCP/PP) was produced using the extrusion cast film technique. The compatibilizing effect of thermoplastic elastomers, styrene-ethylene butylene-styrene (SEBS), maleic anhydride grafted SEBS (MA-SEBS), and maleic anhydride grafted polypropylene (MA-PP) on the mechanical properties and morphology of the TLCP/PP composite films was investigated. It was found that SEBS provided a higher value of tensile modulus than MA-SEBS, which in turn was higher than MA-PP, despite the expected stronger interaction between the MA chain and TLCP. The observation of the morphology under optical and scanning electron microscopes suggested that all three compatibilizers helped improve the dispersion of the TLCP fibers and increased the fiber aspect ratio to a different extent. The fractured surface of the specimens showed more fiber breakage than pull-out when a compatibilizer was added, which suggested the improvement of interfacial adhesion. The surface roughness of fibers with an added elastomeric compatibilizermay also provide mechanical interlocking at the interface. It is suggested that the increase in the viscosity ratio of TLCP/PP due to the added elastomeric compatibilizer, SEBS and MA-SEBS, compared with the thermoplastic compatibilizer, MA-PP, is more effective in improving the composite mechanical properties. 相似文献
15.
Thermotropic liquid crystalline polymers (TLCP), 4‐hydroxybenzoic acid (HBA)/6‐hydroxyl‐2‐naphthoic acid (HNA) copolyester, and HNA/hydroxylbenzoic acid (HAA)/terephthalic acid (TA) copolyester reinforced by carbon nanotube (CNT) were prepared by melt compounding using Hakke internal mixer. The thermal behavior and degradation of CNT reinforced HBA/HNA copolyester and HNA/HAA/TA copolyester have been investigated by dynamic thermogravimetric analysis under nitrogen atmosphere in the temperature range 30 to 800°C to study the effect of CNT on the thermal decomposition behavior of the TLCP/CNT nanocomposites. The thermal decomposition temperature at the maximum rate, residual yield, integral procedural decomposition temperature, and activation energy for thermal decomposition was studied to investigate thermal stability of TLCP/CNT nanocomposites. The thermal stability of CNT reinforced HBA/HNA copolyester was increased by addition of a very small quantity of CNT and the residual weight was 42.4% and increased until 50.8% as increasing CNT contents. However, the thermal stability of CNT reinforced HNA/HAA/TA copolyester was decreased initially when a very small quantity of CNT added. The residual weight was decreased from 50.4% to 45.1%. After addition of CNTs in the TLCP matrix, the thermal stability of CNT reinforced HNA/HAA/TA copolyester increased as increasing content of CNT and the residual weight was increased until 53% as increasing CNT contents. The activation energy was calculated by multiple heating rate equations such as Friedman, Flynn‐Wall‐Ozawa, Kissinger, and Kim‐Park methods to confirm the effect of CNT in two different TLCP matrices. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
16.
This work is concerned with the extrusion of sheets from pellets of polypropylene (PP) containing pregenerated microfibrils of thermotropic liquid crystal polymers (TLCPs), referred to as microcomposites. The TLCPs used were HX6000 and Vectra A950. The microcomposites are produced by drawing strands of PP and TLCPs generated by means of a novel mixing technique and pelletizing the strands. The work was undertaken in an effort to improve on the properties for in situ composites in which the TLCP fibrils are generated in contractions in the die and the subsequent drawing step. In situ composites usually exhibit highly anisotropic mechanical properties and the properties do not reflect the full reinforcing potential of the TLCP fibers. Factors affecting the mechanical properties of the composite sheets considered include the effect of in situ composite strand properties and TLCP concentration. In addition, the properties of the extruded sheets are compared to those of microcomposites processed by means of injection molding. It is shown that the sheets produced using microcomposites have a good balance between the machine and transverse direction properties (ratios of these properties ranging from 0.8 to 1.2) and those properties compare well to those obtained by processing microcomposites in injection molding. The tensile modulus of the composite sheets increases with increasing in situ composite strand modulus. The moduli of the 20 wt% Vectra A950 and HX6000 composites are about equal to the modulus of 20 wt% glass reinforced PP (about 2.1 GPa), while the tensile strength of the TLCP reinforced composites is 28% lower than that of the glass reinforced PP. Furthermore, it is shown that the tensile modulus of the 10 wt% TLCP composites approach the predictions of composite theory, while at 20 and 30 wt% TLCP negative deviations from the predictions of composite theory are seen. Finally, it is concluded that the properties of the sheets produced through the extrusion of microcomposites may be further improved by improving the modulus of in situ composite strands and reducing the TLCP fiber diameter. 相似文献
17.
This work is concerned with the extrusion blow molding of bottles from pellets of polypropylene (PP) containing pregenerated microfibrils of thermotropic liquid crystal polymers (TLCPs), referred to as microcomposites. The TLCPs used are HX6000 and Vectra A950. The microcomposites are produced by drawing strands of PP and TLCPs generated by means of a novel mixing technique and pelletizing the strands. The work was undertaken in an effort to improve on the properties observed for in situ composites in which the TLCP fibrils are generated in elongational flow fields that occur in polymer processing operations and to determine if TLCP reinforced bottles could be produced by extrusion blow molding of microcomposites. In situ composites usually exhibit highly anisotropic mechanical properties and the properties do not reflect the full reinforcing potential of the TLCP fibers. Factors considered include the effect of TLCP concentration and in situ composite strand properties on the mechanical properties and anisotropy of bottles made from microcomposites. Specifically, strands having three different draw ratios are used to produce bottles at 10 and 20 wt% TLCP. Increasing the in situ composite strand modulus is shown to cause an increase in both the machine and transverse direction moduli of the composite bottles. The mechanical properties of the bottles increase with increasing TLCP composition. Finally, the machine and transverse direction properties are not balanced in the composite bottles produced in this study (degrees of anisotropy ranging from 1.5 to 1.8). The mechanical anisotropy is probably the result of a low blow up ratio (2) in the bottles and the TLCP fibers being oriented primarily in the machine direction due to the shear flow in the die. 相似文献
18.
A thermotropic liquid crystalline polymer (LCP), when added to polystyrene (PS), can function as both a processing aid and a reinforcing filler. Thermal, rheological, and mechanical properties of the pure components and blends containing up to 10 percent LCP are reported. The LCP used is immiscible with PS, and when an extensional component of flow is present during processing, the LCP forms an elongated fibrous phase oriented in the flow direction. This oriented phase lubricates the melt, substantially lowering the viscosity. When the processed blend is cooled, the dispersed fibrous LCP phase is preserved in the solidified material. The LCP microfibers behave like short reinforcing fibers to improve the mechanical properties of the blend; for example, at an LCP concentration of 4.5 percent, the modulus is increased about 40 percent vs. pure PS. 相似文献
19.
The effect of molecular structure of thermotropic liquid crystalline polymers (TLCP) on the interfacial adhesion with polycarbonate (PC) was investigated by varying the flexible spacer length in the main chain of the TLCP. The interfacial adhesion was estimated by two methods: (1) the debonding stress from the melt-contacted TLCP/PC plates was measured by a modified pin-pull test; (2) the mechanical response of the melt-mixed blend was analyzed by the composite theory. Both methods indicated that the interfacial adhesion of the TLCPs with flexible spacer was improved over that of a rigid TLCP (i.e., Vectra A950), and that it was further enhanced by an increase in the length of a flexible unit. 相似文献
20.
Several polymer blend compositions of LaRC-TPI 1500 and New TPI 450 (Mitsui Toatsu) with Xydar SRT 900 LCP (Amoco Performance Products) were extrusion processed. In addition to binary blends containing one TPI with an LCP, ternary blends consisting of an alloy containing both TPIs as the matrix were also processed. By varying the ratio of the polyimides in the matrix, the blends' thermal behavior could be tailored. This paper addresses both processing issues and film properties of these blends. Rheological and thermal studies were conducted on both blends made in a torque rheometer and on biaxially oriented film produced with a counter-rotating annular die. These biaxial blend films were further characterized by measuring tensile and electrical properties. For 70/30 New TPI/Xydar equal biaxial films of 50 μm thickness, a modulus of 3.8 GPa and a stress at break of 100 MPa were measured. For near uniaxial blend films (±3°) a modulus of 14.5 GPa and a strength of 220 MPa in the machine direction (MD) were measured. The transverse direction (TD) properties were still higher than the neat New TPI. The electrical properties of these blends were outstanding. The dissipation factor was typically less than 0.01 for most blend compositions. Similarly, the dielectric constant was typically less than 3 up to temperatures as high as 300°C. 相似文献