首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sweet dough requires longer mixing time than salty or white pan bread doughs to reach a developed stage. Although many studies have dealt with the effect of mixing time on dough, few have referred to yeast sweet doughs. The aim of this study was to evaluate if the changes in dough microstructure during different stages of mixing were the same between sweet pan bread and white pan bread, using as control a flour water system. Scanning electronic microscopy (SEM) and some bread characteristics were used as evaluation parameters. Doughs were prepared in a Brabender Farinograph instrument. Different mixing times were used for each formulation, which correspond to common farinographic parameters such as: arrival time, peak time, departure time, etc. Farinographic consistency was evaluated at those times. Results showed that sweet dough farinogram was quite different from those obtained from the other two samples; it starts with a low consistency value (260 BU), and after 8 min of mixing it began to increase until almost reaching the 500 BU line; then the graphic follows the classical curve. Larger products were obtained from arrival time to departure time for both formulations. SEM showed that as mixing proceeds the dough structure opens, changing its appearance from a compact structure at the beginning to a very open one at the end of the mixing process. SEM also showed that the process of mixing is the same for the two samples and control; however, the time needed to reach each stage was different among samples. Farinogram can be used to get information about mixing behavior of yeast sweet doughs. The study of mixing can be easier using sweet dough formulations because it was possible to get more points between the onset of mixing and full dough development, and the process was very similar no matter the formulation.  相似文献   

2.
ABSTRACT: This study investigated the possibility of incorporating barley or soy flour into wheat flour using transglutaminase (TG)-catalyzed cross-linking, without deterioration in bread quality. A Farinograph and texture analyzer were used to examine mixing properties and extensibility of doughs, respectively. Addition of increasing levels of barley/soy flour (with and without TG) increased Farinograph water absorption in the soft and hard wheat cultivars studied. Dough resistance increased and extensibility decreased with TG treatment. TG showed great promise in processing of bread supplemented with barley flour, even at a very low level (0.25%, wt/ wt), but did not notably improve the quality of soy flour-supplemented breads.  相似文献   

3.
The influence of chemical and biological acidification on dough rheological properties and bread quality has been investigated. Two different flour types were used. Dough was chemically acidified with lactic acid. Two types of biologically acidified dough were prepared: dough with dry sourdough and with a Lactobacillus brevis preferment. Wheat dough rheological properties were investigated using the Farinograph, Extensograph and Amylograph. The baking response was also determined using standard baking tests. Addition of acidifiers resulted in firmer doughs with less stability, decreased extensibility and decreased gelatinisation maximum. The biological acidifiers increased the bread specific volume. Lactic acid addition had no influence on bread specific volume. In general, biological and chemical acidification decreased bread hardness. The addition of dry sourdough significantly decreased the lightness and increased the yellowness and redness of the bread crumb. The crust chroma, hue angle and brownness index were significantly changed by addition of acidifiers.  相似文献   

4.
High fiber Chapathi, an Indian unleavened bread incorporating different levels (5–15%) of wheat bran to wheat flour was prepared and evaluated for acceptability and farinograph characteristics. Whole wheat flour, wheat bran and its differently milled fractions were analyzed for chemical composition and functional properties. The water absorption capacity of bran was slightly lower than that of flour and did not increase as a function of time. The bran incorporated doughs were difficult to knead and sticky with no change in rolling properties. Farinograph characteristics revealed an increase in dough development time and a decrease in mixing tolerance index as the level of incorporation of bran increased. Wheat bran incorporated products scored lesser for the sensory quality attributes than controls. The differences were statistically significant for products prepared with 10% and 15% bran and not significant for products prepared with 5% level of bran. It can be concluded that wheat bran can be incorporated up to a level of 5% for preparation of high fiber phulkas or chapathis without affecting sensory quality.  相似文献   

5.
硒化卡拉胶在小麦粉及其制品中的应用研究   总被引:3,自引:1,他引:2  
以GB 14880-1994中规定的谷物食品强化硒化卡拉胶(硒酸酯多糖)标准下限值的1.1倍(0.154 mg/kg)为基准,设计在小麦粉中分别强化相当于0.154 mg/kg的0.5倍、1倍和1.5倍的硒化卡拉胶稀释预混料,与空白对照组比较,进行了粉质、拉伸等基础分析,并制作了馒头、面条及面包.研究结果表明:在小麦粉中适量强化硒化卡拉胶对面团粉质特性没有明显影响,而对小麦粉拉伸特性有一定的改良影响,面团的粉力和延伸度有随硒化卡拉胶添加量的增加而增加的趋势;在小麦粉中强化硒化卡拉胶后对馒头、面条和面包的色泽、滋味、气味等感官品质及内部质构无不良影响,强化硒化卡拉胶所制作的面包总评价比对照组好.因此,硒化卡拉胶作为营养强化剂在小麦粉及馒头、面条和面包中是适用的.  相似文献   

6.
Hydrolyzed whey permeate syrups (HWPS) prepared by various treatments were incorporated at 6% flour basis as a substitute for sucrose in a typical white pan bread formulation. Results indicated that there were little significant differences in the yeast fermentation rate, proof time, and bread quality among doughs formulated with sucrose (control) and HWPS. Demineralized 75% HWPS produced good functional qualities of dough and yielded bread equal to or better than the control. The 50% and 95% HWPS had some adverse effects on the handling characteristics of the doughs. Breads made with demineralized 50% and 95% HWPS were firmer than the control. The 50% HWPS breads showed darker crust colors, whether HWPS was or was not demineralized.  相似文献   

7.
Controlled stress rheometry revealed that differences in wheat flour dough strengths could be observed by means of dynamic rheological measurements in the region of higher stress amplitude (ie >100 Pa). At lower stress amplitude (τo) the values of elastic modulus G′ for weak doughs were higher than those for strong doughs, but they decreased substantially beyond 100 Pa stress amplitude (τo), such that the G′ values for strong doughs crossed over the G′ values for weak doughs. Beyond a critical value of stress amplitude (ie 100 Pa), true differences in dough strengths could be seen on the basis of their elastic characteristics, because at large deformations protein–protein interactions played a more dominant role in the rheological behaviour of flour doughs. Dynamic rheological analysis demonstrated a very weak inverse relationship (R2 = 0.16) between the G′ values of flour doughs and loaf volume data for 12 wheat cultivars of diverse bread‐making performance. However, the G′ values of glutens showed significant positive relationships with bread‐making performance, explaining 73% of the variation in loaf volume. © 2002 Society of Chemical Industry  相似文献   

8.
BACKGROUND: In order to explore the differences in rheological behaviour of full formula and flour/water doughs due to mixing, small‐amplitude oscillatory strain (SAOS) rheological measurements were made on fully developed nonyeasted and inactivated yeasted dough formulations mixed at various speeds using the Brabender Farinograph and the Bohlin ReoMixer. These results were compared with large‐strain empirical rheological results (including Kieffer rig uniaxial extension) as well as baking test results to determine differences due to mixer speed and/or flow distribution. RESULTS: The uniaxial extension and baking tests detected mixing speeds with incomplete dough development. Above those speeds, energy input to peak development was relatively constant in the Farinograph. Extensibility trends showed increases with speed in the yeasted dough samples, which were attributed to variation in fermentation time during mixing to peak torque at different speeds. While SAOS results did not show differences due to mixing speed, they did detect differences between the yeasted and nonyeasted dough formulations, as well as significant differences (P < 0.01) between yeasted doughs mixed in the two different mixers. CONCLUSION: The results indicate that known differences in the distribution of elongational and shear flows in the two mixers impact the development of dough structure during mixing. Copyright © 2008 Society of Chemical Industry  相似文献   

9.
The bread making process transforms wheat flour doughs into highly porous breads. Bread has been shown (Wang, Austin and Bell, 2011) to be a single, open cell that is massively interconnected giving it a maze-like structure that encompasses the entire volume. The solid strands are also porous and contain closed cells. How the bubbles in dough mix partition into these open and closed cells in bread is not known. This study was undertaken to track changes in bubbles in doughs using 3-D X-ray microtomography techniques as doughs proofed and were baked. The mechanical properties of doughs were measured to establish how dough rheology impacted bubble growth. The doughs were made with ‘medium strong’ Canadian flour (CWRS) and ‘weak’ Australian flours (Wylk). Both doughs had similar protein amounts and strain-hardening characteristics; however the CWRS dough was more elastic. The scans identified formation of clusters of partially-coalesced bubbles from which one cluster grew to form a massively interconnected, single, closed cell in doughs as doughs proofed. Microscopy studies confirmed that the open cell in breads was made of partially-coalesced bubbles. Compared to the dough made with the Australian flours, the dough made from Canadian flour had a thicker dough layer separating bubbles, smaller size bubbles and a slower rate of formation of the continuous structure. This study highlights the critical role of dough elasticity and the disproportionation phenomena of bubble growth in controlling the quality of cell structures in dough and baked products.  相似文献   

10.
为研究小米粉添加对面团流变特性和馒头制品质构特性的影响,分别选取不同粒径的粳性和糯性小米粉,利用损伤淀粉测定仪、快速黏度分析仪等对不同小米粉的损伤淀粉含量和糊化特性进行分析,通过流变仪测定小米面团的流变学特性,结合扫描电镜观察小米面团微观结构变化,并利用质构仪测定小米馒头的质构特性。结果表明:随着小米粉粒径的减小,多数品种小米粉(除冀谷39和汇华金米)损伤淀粉的碘吸收率增加;受直支比的影响,相同目数下,粳性小米粉的峰值黏度、谷值黏度、最终黏度和回生值较糯性小米粉大。流变学研究表明,除汇华金米和冀谷39,储能模量与损耗模量随角频率增加总体上升。扫描电镜观察发现小米粉的添加使面团结构更加松散。小米粉的添加会对馒头质构性质中硬度、咀嚼性和弹性等有一定程度的负面影响。主成分分析表明馒头咀嚼性、损伤淀粉、峰值黏度、谷值黏度、最终黏度、崩解值和回生值可作为区分粳糯品种和馒头品质特征的指标。  相似文献   

11.
The effect of flour extraction rate and baking on thiamine (vitamin B1) and riboflavin (vitamin B2) content and antioxidant capacity of traditional ginger cake was studied and then compared to white wheat bread. Ginger cake was formulated either with whole-grain (100% extraction rate) or with brown (92% extraction rate) rye flour and baked at 180 °C for 18 min. The antioxidant capacity was evaluated in terms of radical scavenging activity against peroxyl (ROO·) and superoxide anion radicals (O 2 ·? ). Thiamine content in rye doughs (F-100% and F-92%) was found to be 38% lower when compared to wheat dough. In contrast, whole-grain and brown rye doughs exhibited an almost fourfold higher riboflavin content than wheat dough. Rye dough baking led to reductions in thiamine (from 53 to 65%) and riboflavin (from 69 to 71%) contents. Likewise, thiamine and riboflavin contents in wheat dough were also reduced (56 and 10%, respectively) after baking; however, ginger cake with whole-grain rye flour exhibited significantly higher thiamine and riboflavin contents. Rye doughs and ginger cakes showed higher scavenging activities against ROO· radicals when compared to that of wheat dough and bread. Thus, baking significantly enhanced ROO· scavenging properties of ginger cakes while only a slight increase was observed in wheat bread. In contrary, baking gave rise to a decrease in SOD-like activity both in ginger cake or wheat bread. Our findings suggest that formulation with whole-grain rye flour can potentially increase B1 and B2 vitamin contents as well as the ROO· scavenging capacity of traditional ginger cake.  相似文献   

12.
Gluten, starch, water soluble material, and glutenin‐rich and gliadin‐rich proteins were extracted from three Canadian wheat cultivars representing the Canada Western Red Spring (CWRS) (cv Roblin), Canada Western Extra Strong (CWES) (cv Glenlea) and Canada Prairie Spring (CPS) (cv AC Crystal) classes having glutenin‐to‐gliadin (Glu:Gli) ratios of 0.70, 0.75 and 0.85 respectively, all giving the same high‐molecular‐weight glutenin subunit score (Glu‐1 score) of 10. The resulting fractions were reconstituted to produce 18 mixtures of flour components, representing all combinations of Glu:Gli ratio and protein content observed in the original three flours. Dough rheological properties and baking (bread and tortilla) performance were determined using small‐scale techniques. Within any of the cultivars, increasing the Glu:Gli ratio in a reconstituted dough system had significant effects on dough and end‐use properties, causing increases in mixograph development time (MDT), maximum resistance (Rmax), pan bread loaf volume, tortilla dough maximum resistance and cooked tortilla puncture force. The CWRS wheat Roblin, proved to be best suited for pan bread at higher protein content and higher Glu:Gli ratio, and also produced a high protein tortilla of large diameter at a Glu:Gli ratio of 0.70. The CPS flour, AC Crystal, was good for making tortillas at protein contents of 110–130 g kg−1 and at its original ratio of 0.85. The CWES wheat Glenlea, did not perform as well in bread or tortilla‐making but in its role as a blending wheat, altering the Glu:Gli ratio of Glenlea to 0.70 may have an advantage by lowering mixing time without compromising baking properties. Manipulating the Glu:Gli ratio may make a wheat cultivar suitable for a particular end‐product. For the Department of Agriculture and Agri‐Food, Government of Canada, © Minister of Public Works and Government Services Canada 2005. Published for SCI by John Wiley & Sons, Ltd.  相似文献   

13.
BACKGROUND: Roller milling of hull‐less barley generates fibre‐rich fractions (FRF) enriched in non‐starch polysaccharides from the endosperm cell walls (β‐glucans and arabinoxylans). This investigation was initiated to compare the suitability of different baking processes and to determine the optimal conditions for incorporation of barley FRF into pan bread. RESULTS: Addition of FRF from waxy and high‐amylose starch hull‐less barley genotypes was evaluated in pan bread prepared from Canada Western Red Spring (CWRS) and Canada Western Extra Strong (CWES) wheat flour. Three bread processes were used: Canadian short process (CSP), remix‐to‐peak, and sponge‐and‐dough. Addition of 20% FRF (equivalent to enrichment with 4.0 g of arabinoxylans and β‐glucans per 100 g of flour) disrupted dough properties and depressed loaf volume. CSP was not suitable for making FRF‐enriched bread because dough could not be properly developed. FRF‐enriched remix‐to‐peak bread was better, especially for the stronger CWES flour. The better bread quality compared to CSP was probably due to redistribution of water from non‐starch polysaccharides to gluten during fermentation prior to remixing and final proof. The sponge‐and‐dough process produced the best FRF‐enriched bread because of the positive effect of sponge fermentation on gluten development and hydration. FRF was added at the dough stage to fully developed dough. CONCLUSION: The method of bread production strongly influences bread quality. Pre‐hydration of FRF improved bread quality. CWRS and CWES flour produced comparable FRF‐enriched sponge‐and‐dough bread. Addition of xylanase to the sponge‐and‐dough formula improved the loaf volume, appearance, crumb structure and firmness of FRF‐enriched bread. Copyright © 2007 Society of Chemical Industry  相似文献   

14.
Effect of blending 50 to 250 g kg−1 cowpea flour in wheat flour on rheological, baking and sensory characteristics of bread, chapati, cookies and muffins was studied. Farinograph water absorption, dough development time, mixing tolerance index and dough stability increased significantly with increased amount of cowpea flour. Incorporation of cowpea flour lowered gelatinisation time and peak viscosity. Loaf volume and overall acceptability scores of bread were reduced significantly beyond 150 g kg−1 incorporation of cowpea flour. There were significant changes in specific volume and overall acceptability scores of muffins, registering an initial improvement up to 50 g kg−1 and a significant decline thereafter. © 1999 Society of Chemical Industry  相似文献   

15.
To investigate how flour affects crumb structures, we used Synchrotron X-ray tomography to scan and capture the growth of gas bubbles in leavened and unleavened bread doughs of two different flours. Bubbles were mobile in all doughs; they coalesced and disproportionated with the rate of coalescence being higher in leavened doughs. In unleavened dough, new bubbles were detected, attributed to arise from poro-visco-elastic relaxation of gluten as dough rested. In each yeasted dough, a single, massively inter-connected cluster formed which percolated at ~26% dough porosity irrespective of flour type in dough. Following percolation, dough expansion was driven primarily by growth of the percolating bubble. Between flours, the rate of coalescence was higher in Wylkatchem (Wylk), an Australian flour dough, than in Canadian Western Red Spring (CWRS) flour dough, known for superior proof and bake qualities. How the physical and rheological properties of dough liquors could have affected the stabilities of bubbles in these doughs have been discussed.  相似文献   

16.
以面包专用粉为主料,添加紫苏油粕粉制备具有紫苏风味的紫苏面包粉,并添加适量的谷朊粉改善其粉质特性,采用粉质仪检测,以吸水量、形成时间、稳定时间和质量指数为考核指标,研究紫苏油粕粉和谷朊粉添加量对紫苏面包粉品质的影响。结果表明,紫苏油粕粉添加量10%,谷朊粉添加7%时,紫苏面包粉粉质最优:吸水量60.9%,形成时间10 min20s,稳定时间12min 36s,质量指数140。  相似文献   

17.
The rheological characteristics of twenty wheat flour samples obtained from four organic flour blends and a non-organic control were compared in relation to their ability to predict subsequent loaf volume in the baked bread. The flour samples considered had protein contents that varied between 11–14 g/100 g. Four different rheological methods were employed. Oscillatory stress rheometry on the protein gel extracted from the wheat flour, oscillatory stress rheometry and creep measurement on undeveloped dough samples and biaxial extensional measurements on simple flour–water doughs. None of the fundamental rheological parameters correlated with loaf volume. There was a correlation between the storage modulus of the gel protein and storage modulus for the undeveloped dough (r = 0.85). There was a weak negative correlation between protein content and biaxial extensional viscosity (r = −0.62). Stepwise multiple regression related loaf volume to dough stability time (measured on the Farinograph) and tan (phase angle) for the undeveloped dough samples (overall model r2 = 0.54). The results indicate that the four rheological tests considered could not be used as predictors of subsequent loaf volume when the bread is baked.  相似文献   

18.
BACKGROUND: The influence of monoacylglycerol Rimulsoft Super(V) and L ‐glutamic acid added to wheat flour dough was studied. Properties of the doughs were evaluated on the basis of chemical analysis and rheological measurements on a farinograph. Bakery products made from these doughs were subsequently subjected to sensory analyses. RESULTS: It was found that L ‐glutamic acid influenced the water absorption in dough more (50.0 g kg?1; water absorption 56.6%) than monoacylglycerol Rimulsoft Super(V) (50.0 g kg?1; water absorption 55.0%). Farinograph measurements showed that doughs with the addition of L ‐glutamic acid resembled flour containing high‐quality gluten, but dough with the addition of monoacylglycerol Rimulsoft Super(V) corresponded to ‘weak’ flour. Sensory analyses revealed that, in comparison with the control sample of French loaf, the saliva‐absorbing capacity increased in the French loaf with the highest addition of L ‐glutamic acid (30.0 g kg?1). Deterioration in quality and texture in French loaf with addition of L ‐glutamic acid (8.0 g kg?1, 30.0 g kg?1) was noted. No other statistically significant differences were found. CONCLUSION: It is acceptable to add both additives to dough in order to modify its rheological properties. Copyright © 2010 Society of Chemical Industry  相似文献   

19.
The effects of transglutaminase (TG) and glucose oxidase (GO) on the handling properties of model bread dough were examined at both normal (2% wt. by flour) and reduced (1% wt.) sodium chloride (NaCl) levels using two Canada Western Red Spring (CWRS) cultivars; Pembina and Harvest. The reduction of NaCl level had negative effects on dough rheology and stickiness, however, the inclusion of GO (0.001 and 0.01% by flour weight) or TG (only at the 0.5% by flour weight inclusion) was able to improve dough strength and reduce stickiness. GO appeared to be more effective than TG (at 0.01%) at equivalent concentrations for improving dough‐handling properties. Flour cultivar had significant effects; Harvest flour (weaker) was more impacted by salt reduction and enzyme inclusion compared to Pembina flour (stronger). Crosslinking assays showed significant differences in glutenin macropolymer (GMP) content in dough prepared with GO, and dough prepared with different flours. Additionally, significantly fewer free thiol groups were found in dough produced with GO compared to dough without any enzymes and those with TG. GO appears to have potential for use as a bread improver to reduce stickiness and improve the strength of bread dough produced at lower salt concentrations, especially for dough prepared with weaker flour cultivars.  相似文献   

20.
In this study, the rheological properties of gluten-free doughs from rice flour containing different amounts of carob flour were investigated. Water added changed in response to the carob amount. Dynamic oscillatory and creep tests were performed in order to gain knowledge on the rheological behaviour of doughs, which is essential for the control of the bread-making procedure and the production of high-quality bread. Simple power law mathematical models were developed in order to evaluate the effect of carob and water added in dough rheological behaviour. Creep data evaluation demonstrates that an increase in water content decreased the resistance of dough to deformation and, therefore, dough strength, whereas carob flour increased the elastic character and structure strength of the dough. This was also found in dynamic oscillatory tests. Increased amounts of carob flour led to an increase in bread dough elastic character since fibre addition elastifies and strengthens the dough structure. Moreover, doughs exhibited a solid-like viscoelastic character, with the storage modulus (G′) predominant over the loss modulus (G″). Dough rheological properties have an important effect on baking characteristics. Rheological experiments and applied mathematical models can provide us with good knowledge of rheological behaviour and dough viscoelasticity prediction. Therefore, dough samples containing carob-to-water ratios of 10:110 and 15:130 can be considered to possess a balance between the viscous and elastic properties compared to the other samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号