首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Graft copolymerization of maleic anhydride (MA) onto partially and fully hydrolyzed poly(vinyl alcohol), PVA, was carried out in presence and in absence of an initiator. The structural features of these grafts were confirmed by 1 HNMR analysis. 1 HNMR analysis was also used to determine the percentage of grafting. These grafts were crosslinked using different concentrations of either 1,1,1-trimethylolpropane trimethacrylate (TPT) or methylene bisacrylamide (MBA) as Hexa- or tetra-functional crosslinker, respectively. The crosslinkers concentrations ranged from 1% to 30% (wt.%) based on the total weight of grafts. The final water content, volume fraction of the polymer and swelling capacity were determined for all grafts. The effect of MBA and TPT crosslinkers structure on swelling properties of both partially and fully hydrolyzed PVA grafts were also determined.  相似文献   

2.
A transparent hydrated gel is prepared from a poly(vinyl alcohol)(PVA) solution in a mixed solvent consisting of water and dimethyl sulfoxide(DMSO). Upon cooling the PVA solution below the room temperature, a gel is formed as a consequence of crystallization of PVA molecules. Exchange of DMSO in the formed gel with water gives the hydrated PVA gel which is high in tensile strength, water content, and light transmittance.  相似文献   

3.
高浓度聚乙烯醇(PVA)水凝胶具有一定的修复功能,但其自修复机理及制备工艺参数对其修复性能的影响缺乏研究。本文采用冷冻-解冻法制备了高浓度自修复PVA水凝胶,通过调整PVA水凝胶制备工艺参数(PVA分子量、PVA浓度、冷冻时间、解冻时间、冷冻-解冻次数、修复时间、冷冻温度等)得到了最佳工艺条件,分析了水凝胶自修复机理,并研究了PVA水凝胶的多次自修复性能。研究结果表明:相对分子质量大的PVA制备的水凝胶自修复性能好;其中冷冻时间为2h,解冻时间为1h,一次冷冻-解冻循环制备得到的水凝胶自修复性能最好,最佳修复时间为12h,能较好地进行反复自修复。指出水凝胶自修复性能主要是由其内部可逆氢键的相互作用形成的,其主要影响源于冷冻-解冻处理后水凝胶内部羟基含量及PVA分子的流动性。  相似文献   

4.
The melting temperatures (TM) of hydrogels prepared by chilling aqueous solutions of syndiotacticity-rich poly(vinyl alcohol) (s-PVA) at 0°C were measured rising temperature of gels from the initiative temperature (TI) of 0–70°C (every 10°C). The apparent enthalpies of fusion of a junction ΔH's were estimated from the relation between the logarithm of polymer concentration (log C) and 1/TM. ΔH depended on TI, showing that the melting point of gels depended on a thermal hysteresis. The highest polymer concentration CH in those of the gels which have no melting point above an initiative temperature was determined and ΔH was estimated from the relation between log CH and the reciprocal melting point of the gels with CH, 1/TIM. The ΔH was 15.1 kJ/mol in the range of higher polymer concentrations and 43.9 kJ/mol in the range of lower concentrations.  相似文献   

5.
We report development of poly(vinyl alcohol) (PVA)-based novel injectable hydrogel nanocomposite scaffolds. Nanocellulose (NC), synthesized from agricultural biomass, was used as reinforcement within PVA matrix. The hydrogels were formed using physical crosslinking process involving multiple freeze–thaw cycles. A range of bio-nanocomposite hydrogels were prepared with varying concentrations of NC. With increasing loading of NC, crystallinity was found to be increased, which could be attributed to nucleating effect and crystalline nature of nanofibrillar cellulose. Investigation of microstructural surface topology indicated reduced surface perturbations upon incorporation of NC. Fourier transform infrared spectroscopy studies further indicated presence of characteristic functional groups and possible interactions between PVA and NC. Enhanced structural integrity and dynamic stability of the bio-nanocomposite hydrogels were also confirmed by carrying out rheological investigations at different frequency, amplitude, temperature, and time sweeps. Further, the bio-nanocomposite hydrogels demonstrated excellent injectability and self-standing behavior, establishing the promising potential as injectable scaffolds. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48789.  相似文献   

6.
Hydrogel prepared by repetitive freezing and thawing of poly(vinyl alcohol) aqueous solution was chemically crosslinked with glutaraldehyde. The chemically crosslinked hydrogel hardly changed its physical appearance, and showed good elasticity and strength as original gel. However, after treating in boiling water, it swelled a little, depending on the condition of the chemical treatment. The melted gel thus obtained showed shape memorizing property, that is, it could firmly hold nearly 200% of strain, keeping its original high elasticity. The strain could be released very quickly (< 1 s) in boiling water, and the gel was suggested to be applied to a new type of gel actuator. X-ray diffraction study revealed that the melted gel does not necessarily reform the physical crosslinks in exactly the same manner as the original gel in the process of shape restoring, but the distribution of the physical crosslinks can be restored as they were. It was suggested that the chemical crosslinks which remember the distribution of the physical crosslinks plays a critical roll in the shape restoring process.  相似文献   

7.
The effect of the stereoregularity and molecular weight of poly(vinyl alcohol) (PVA) on the mechanical properties of hydrogel was investigated. Compressive strength, creep behavior, and dynamic viscoelasticity were measured on hydrogels of syndiotacticity‐rich PVA derived from poly(vinyl pivalate) (Dp = 1690 diad‐syndiotacticity = 61%, Dp = 8020 diad‐syndiotacticity = 62%) and atactic PVA (Dp = 1750 diad‐syndiotacticity = 54%, Dp = 7780 diad‐syndiotacticity = 54%). Increasing the molecular weight of molecular chains constituting the gel improved the compressive strength of atactic PVA hydrogel. The stereoregularity of PVA had a greater effect than molecular weight on the strength of the hydrogel. Gel prepared from 8.8 g/dL syndiotacticity‐rich PVA had a high compressive modulus of 10 kPa, and the compressive modulus of the gel prepared from 3.3 g/dL was comparable with that of atactic PVA hydrogel prepared with more than 6 g/dL. The dynamic storage modulus of the gel derived from syndiotacticity‐rich PVA was remarkably higher than that of the atactic PVA gel and remained constant up to 60°C. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
Summary Poly(vinyl alcohol-co-vinyl gallate) was successfully synthesized utilizing an esterification reaction in which poly(vinyl alcohol) was transesterified with methyl gallate under alkaline conditions. Aqueous solutions of this copolymer exhibited a sharp critical micelle concentration value, indicating that surface activity is exhibited by the copolymer. Most aqueous solutions of this copolymer possess a black coloring, which indicates that the gallate group is complexing with metal ions present in solution.  相似文献   

9.
The structure of the hydrogel of poly(vinyl alcohol) (PVA) and poly(acrylic acid) (PAA) was investigated by small angle X-ray scattering (SAXS) of synchrotron radiation. A physically crosslinked blend gel, which was prepared by repetitive freezing and thawing of an aqueous solution of PVA and PAA, could be chemically crosslinked by esterfication of PVA with PAA even in the hydrogel state. The chemical crosslinking induced the destruction of physical crosslinks into a folded structure, indicating that the chemical crosslinking proceeds at the sites around the physical crosslinks that contain PVA and PAA in much higher concentration than other portion of the gel. The pH-induced structure changes of the PVA hydrogels, chemically crosslinked with poly(acrylic acid) (PAA) were investigated by SAXS on the samples of various chemical crosslinking time. The gels were shrunk at pH4, and swollen at pH8. The results of SAXS showed, that the Porod slope changed with chemical crosslinking time from -3.5 to ?2.9 at pH4, and from ?2.9 to ?2.4 at pH8. The results suggest that a folded structure as a structural domain, which is characterized by fractally rough interface, tends to change into the structure that corresponds to percolation cluster, particularly at pH8. The gels immersed in pH8 showed a remarkable structure change accompanying swelling. The results revealed that a conformational change of PAA chains, induced by the pH change, can be explained by the presence of a structural domain in the gel network, where both PVA chains and PAA chains get entangled and partially form a interpenetrating polymer network(IPN).  相似文献   

10.
We have developed a novel self-expandable biliary stent comprising poly(vinyl alcohol) (PVA). The swelling ratio of the dried PVA hydrogels decreased from 6.7 to 2.6 as the saponification degree increased from 95 to 99.9, whereas the storage modulus and tear strength increased from 17 to 400 kPa and from 0.5 to 10 N mm−1, respectively. The dimensional ratios of the inner- and outer-diameter and the length of the dried tube-shaped hydrogels (saponification degree of 98.5) prepared by simple air drying isotropically increased 1.4–1.5 times in physiological saline. Meanwhile, the dimensional ratios of the dried hydrogels prepared by drying under extension increased by twice, whereas the length decreased slightly, indicating anisotropic swelling. The radial force of the reswollen tube-shaped hydrogels (6.6 ± 0.6 mN mm−2) was significantly higher than that of a conventional metallic stent (4.4 ± 0.3 mN mm−2), suggesting that PVA hydrogels were applicable as self-expandable stents. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48851.  相似文献   

11.
周宏霞  王明明 《粘接》2012,(6):54-57
以环氧氯丙烷为交联剂,采用室温化学交联法制备了聚乙烯醇(PVA)水凝胶,研究了交联温度和交联时间对PVA溶胀性能和力学性能的影响,借助差示扫描量热法(DSC)和扫描电子显微镜(SEM)对PVA水凝胶进行分析表征。结果表明,当交联时间为3d且交联温度为50℃时PVA水凝胶的综合性能最佳。PVA的玻璃化转变温度为-54.50℃,PVA水凝胶中包含有自由水、束缚水和非冷冻水。  相似文献   

12.
Poly(vinyl alcohol) (PVA) hydrogels have shown potential applications in bionic articular cartilage due to their tissue-like viscoelasticity, good biocompatibility and low friction. However, their lack of adequate mechanical properties is a key obstacle for PVA hydrogels to replace natural cartilage. In this study, poly(ethylene glycol) (PEG) and glycerol were introduced into PVA, and a PVA/PEG–glycerol composite hydrogel was synthesized using a mixing physical crosslinking method. The mechanical properties, hydrophilicity and tribological behavior of the PVA/PEG–glycerol hydrogel were investigated by changing the concentration of glycerol in PEG. The results showed that the tensile strength of the hydrogel reached 26.6 MPa at 270% elongation at break with 20 wt% of glycerol plasticizer, which satisfied the demand of natural cartilage. In addition, the excellent hydrophilicity of glycerol provides good lubricating properties for the composite gel under dry friction. Meanwhile, self-healing and cellular immunity assays demonstrated that the composite gel could have good self-healing ability and excellent biocompatibility even in the absence of external stimuli. This study provides a new candidate material for the design of articular cartilage, which has the potential to facilitate advances in artificial joint cartilage repair. © 2022 Society of Industrial Chemistry.  相似文献   

13.
Shubhangi G. Gholap 《Polymer》2004,45(17):5863-5873
Hydrophobically modified poly(vinyl alcohol), [PVA] was synthesized by graft copolymerization of N-tertiary butyl acrylamide [NTBA] onto PVA by free radical polymerization. The incorporation of NTBA onto PVA chains was confirmed by elemental analysis, FT-IR and NMR spectroscopy. A series of graft copolymers with different contents of NTBA were prepared and membranes were casted from these copolymer solutions in dimethyl sulfoxide. The increase in hydrophobicity with an increase in NTBA content was investigated by contact angle measurements. The swelling behaviour of membranes as a function of temperature, hydrophobic content, annealing temperature and period was studied. Permeability of solutes through these membranes was investigated as a function of solute size, membrane hydrophobicity and temperature. The swelling behaviour of the copolymer membranes showed that the lower content of NTBA gives discontinuous volume transition with respect to temperature whereas, the presence of higher amounts of NTBA showed decreased swelling ratios with very little influence of temperature on the swelling. The permeabilities of solutes through these membranes were strongly dependent on the size of the solute, solution temperature and hydrophobicity of the membrane. The copolymer membranes were further characterized using DSC, DMA and XRD. The peak becomes broader as the NTBA content increases.  相似文献   

14.
倪靖滨  董伟  侯静  刘宇光 《化学工程师》2009,23(7):56-58,73
简要评述了聚乙烯醇水凝胶的制备方法,分析了各种方法的优点和缺点,介绍聚乙烯醇辐照交联的基本原理,并展望了辐射交联聚乙烯醇水凝胶研究及应用前景.  相似文献   

15.
Various pH-sensitive sequential interpenetrating polymer network (IPN) hydrogels were prepared by introducing poly (vinyl alcohol) (PVA) hydrogel into Poly (aspartic acid) (PASP) hydrogel by freeze-thawing treatment to obtain a novel drug delivery system to the intestine. The structure and the morphologies of the prepared hydrogels were studied by Fourier Transform Infrared Spectroscopy (FTIR) and scanning electron microscopy (SEM). The thermal behavior and crystallinity of the hydrogels were characterized by differential scanning calorimetry (DSC) and X-ray diffraction (XRD). Their pH-sensitive properties moreover were studied and the results revealed that both PASP hydrogel and IPN hydrogels exhibited excellent pH-sensitivity. Furthermore, the controlled drug release properties of the hydrogels were also evaluated and results indicated that by increasing the PVA fraction in the IPN hydrogel, the release of Naproxen sodium was improved. These results show that the IPN hydrogels could be a suitable carrier for site-specific drug delivery in the intestine.  相似文献   

16.
杜海燕  许玉玉  任哲  杨慧敏 《化工学报》2018,69(7):3279-3285
结合微波驱动原理、聚离子液体(PIL)及形状记忆聚合物的结构特性,目的是设计合成完全基于聚合物、能在微波驱动下快速回复的聚离子液体/聚乙烯醇(PVA)形状记忆复合材料。首先合成了乙烯基咪唑功能性离子液体单体([ViEtIm][BF4],ILM),之后在含有戊二醛的PVA溶液中对ILM进行原位聚合生成PIL,将PIL引入到交联PVA中,形成聚乙烯基咪唑PIL/PVA形状聚合物复合材料(SMPC)。用核磁对ILM和PIL的结构进行了表征,证明了所合成目标化合物的结构准确性。介电性能测试结果显示PIL/PVA有较高的介电常数和介电损耗,当P[ViEtIm][BF4]含量从0增加到30%时PIL/PVA复合材料的介电损耗因子呈增大趋势,可见PIL是一种有效的微波吸收介质。弯曲法测试结果表明该复合材料在微波驱动下具有很好的形状记忆效应,所有复合材料的形变固定率都接近100%且形变回复率都高达80%以上,且PIL的含量和微波输出功率的大小对材料回复率和回复时间有显著影响。140 W的微波足以驱动PIL/PVA SMPC发生回复,280 W下40 s内可以完成,微波功率增大到420 W时SMPC在20 s内可回复到起始形状。  相似文献   

17.
In this work, the shape effect of silver nanoparticles (AgNPs) on photocatalysis and electrical conductivity was investigated. Different shapes of AgNPs achieved using various concentrations of NaBH4 were characterized using particle size analysis, UV–visible spectroscopy and high‐resolution transmission electron microscopy. The colours of colloidal solutions were found to be influenced by the shape of the nanoparticles. Yellow and blue AgNPs were spherical and triangular in shape, respectively, whereas distorted spherical particles showed a red colour and the presence of both particles in one solution resulted in a green colloidal solution. The AgNPs were used to prepare Ag/poly(vinyl alcohol) (PVA) composite films and their electrical conductivity was investigated. Owing to their better charge carrier generation, uniform distribution in the PVA matrix and enhanced surface plasmon resonance, blue AgNPs (triangular shaped) exhibited superior conductivity performance compared to the other nanoparticles. The values for maximum conductivity for the blue and yellow AgNPs were 3.45 × 10?4 Ω?1 cm?1 and 2.67 × 10?4 Ω?1 cm?1respectively. © 2019 Society of Chemical Industry  相似文献   

18.
Yali Li  K.G. Neoh  E.T. Kang 《Polymer》2004,45(26):8779-8789
A surface modification technique was developed for the covalent immobilization of poly(vinyl alcohol) (PVA) hydrogel onto poly(ethylene terephthalate) (PET) to improve the biocompatibility of the film. The PET film was first graft copolymerized with poly(ethylene glycol) monomethacrylate (PEGMA) in the presence of ethylene glycol dimethacrylate (EGDMA) as crosslinker, and then oxidized with a mixture of acetic anhydride (Ac2O) and dimethyl sulfoxide (DMSO) to produce aldehyde groups on the PET surface. Finally, the prepared PVA solution was cast onto the film and covalently immobilized on the film through the reaction between the aldehyde groups on the PET film and the hydroxyl groups of PVA. The good attachment of the PVA layer to the PET film was confirmed by observing the cross-section of the PET-PVA film using scanning electron microscopy (SEM). Heparin was immobilized on the PVA layered PET using two different methods, physical entrapment and covalent bonding, to further improve the biocompatibility of the film. Attenuated total reflectance (ATR) FT-IR spectroscopy and X-ray photoelectron spectroscopy (XPS) were used to characterize the chemical composition of the surface modified films. The biocompatibility of the various surface modified PET films was evaluated using plasma recalcification time (PRT) and platelet adhesion.  相似文献   

19.
Fluorescence from the fluorescein molecule has been used to study of phase transition processes in five poly(vinyl alcohol) (PVA) hydrogels in the temperature range 75–350 K. These hydrogels were prepared with PVA with molecular weight = 124,000–186,000, 99+% hydrolyzed, by repeated freezing–thawing cycles in five compositions: 9.9, 11.1, 13.3, 16.5, and 20.9 PVA w/w %. Plots of total fluorescence intensity versus temperature, normalized with the fluorescence signal at 75 K, and of the emission wavelength maximum versus temperature indicated that the dynamic of the guest deactivation was dependent on the hydrogel thermal transitions. These thermal transition processes were compared to three model systems: uranine (fluorescein di‐sodium salt) in water, fluorescein in water/ethanol (85%/15% v/v), and fluorescein/PVA homopolymer. Small spectral shifts were obtained for these model systems over the entire temperature range attributed to the hot band effect. Nevertheless, larger spectral shifts were obtained for hydrogels, indicating that shifts of the chemical dissociation equilibrium was occurring in this last case. Slope changes of both intensity and wavelength maximum plots versus temperature occurred at the same temperature values, and we attributed the onset of the hydrogel thermal transition as the sol–gel transition occurring at T ≅ 370 K; at 320 K we observed the glass transition temperature of PVA plasticized by water molecules; at T ≅ 240 ± 5 K we attributed the melting point of water molecules bonded to the PVA chains (freezable bond molecules); at T ≅ 270 ± 5 K we observed the melting point of free water molecules (bulk water); and, at 135–145 K the water glass transition. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 815–824, 2000  相似文献   

20.
Xing Jin 《Polymer》2005,46(14):5149-5160
The pH-responsive dimensional expansion and mass uptake of bi-component hydrogels in the form of fibrous membranes and films were reported. Fibrous membranes and monolithic films were prepared from aqueous mixture of poly(vinyl alcohol) and poly(acrylic acid) at 3.5 COOH/OH molar composition via electrospinning and solution cast, respectively, then cross-linked by heat-induced esterification. Both forms of hydrogels exhibited increasing swelling with increasing pH. For hydrogel fibrous membranes, planar expansion was immediate without the time lag observed on the films, and equilibrium thickness expansion and mass uptake took far longer than planar expansion. The dimensional expansion in the thickness direction was much higher than that in the planar directions for the fibrous membranes, while they were comparable for monolithic films. The peculiar asymmetric dimensional expansion of fibrous membrane is explicable with the asymmetric distribution of the fibers on the planar and thickness directions, which is formed during layer-by-layer collection process of electrospinning. The fibrous membranes distinguished themselves as being far stronger and faster in re-absorption in the swollen state than the cast-films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号