首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Organic Electronics》2007,8(1):44-50
We explore the effects of conventional photo lithographic patterning of the active layer of poly (3-hexylthiophene) (P3HT) organic thin film transistors (OTFT) on device performance. The performance of the devices was monitored in each step of the patterning process. We successfully developed a patterning process which is compatible with plastic substrates and P3HT as the organic semiconductor. In this process, parylene and atomic layer deposition (ALD) Al2O3 were used as capping layers. Al2O3 and parylene/P3HT were etched using Al etchant and O2 plasma reactive ion etching (RIE), respectively. The degradation occurred primarily during the ALD Al2O3 deposition and capping layer etching. There was a 30% degradation in mobility, a 1–2× reduction in drive current, and an increase in threshold voltage after the ALD Al2O3 deposition. In the capping layer etching, a near 50% degradation in mobility was observed. The patterned devices have a mobility of 0.02 cm2/V s, which is 1000× better than photo lithographically patterned P3HT OTFTs previously reported in the literature, and comparable to un-patterned P3HT devices.  相似文献   

2.
Al2O3, HfO2, and composite HfO2/Al2O3 films were deposited on n-type GaN using atomic layer deposition (ALD). The interfacial layer of GaON and HfON was observed between HfO2 and GaN, whereas the absence of an interfacial layer at Al2O3/GaN was confirmed using X-ray photoelectron spectroscopy and transmission electron microscopy. The dielectric constants of Al2O3, HfO2, and composite HfO2/Al2O3 calculated from the C-V measurement are 9, 16.5, and 13.8, respectively. The Al2O3 employed as a template in the composite structure has suppressed the interfacial layer formation during the subsequent ALD-HfO2 and effectively reduced the gate leakage current. While the dielectric constant of the composite HfO2/Al2O3 film is lower than that of HfO2, the composite structure provides sharp oxide/GaN interface without interfacial layer, leading to better electrical properties.  相似文献   

3.
Polymer substrates are essential components of flexible electronic applications such as OTFTs, OPVs, and OLEDs. However, high water vapor permeability of polymer films can significantly reduce the lifetime of flexible electronic devices. In this study, we examined the water vapor permeation barrier properties of Al2O3/HfO2 mixed oxide films on polymer substrates. Al2O3/HfO2 films deposited by plasma-enhanced atomic layer deposition were transparent, chemically stable in water and densely amorphous. At 60 °C and 90% relative humidity (RH) accelerated condition, 50-nm-thick Al2O3/HfO2 had water vapor transmission rate (WVTR) = 1.44 × 10−4 g m−2 d−1, whereas single layers of Al2O3 had WVTR = 3.26 × 10−4 g m−2 d−1 and of HfO2 had WVTR = 6.75 × 10−2 g m−2 d−1. At 25 °C and 40% RH, 50-nm-thick Al2O3/HfO2 film had WVTR = 2.63 × 10−6 g m−2 d−1, which is comparable to WVTR of conventional glass encapsulation.  相似文献   

4.
We investigated the effect of organic polar solvent on the properties of [6,6]-phenyl-C71-butyric acid methyl ester (PCBM) films and poly(3-hexylthiophene) (P3HT):PCBM blend films employed as active layer in organic photovoltaic. The nanoscale morphology and the electrical characteristics of the P3HT:PCBM film can be controlled through organic polar solvent exposure, which exhibited with a short-circuit current density of 8.64 mA/cm2, an open circuit voltage of 0.63 V, and a power conversion efficiency of 3.29% under AM 1.5 illumination with a light intensity of 100 mW/cm2. By exposing the active layer films to organic polar solvent a favorable phase separation in the P3HT:PCBM films is obtained. The improved power conversion efficiency can be to the high conductivity and high surface area of the P3HT:PCBM layer treated with organic polar solvent.  相似文献   

5.
Nanoscale films are integral to all modern electronics. To optimize device performance, researchers vary the film thickness by making batches of devices, which is time-consuming and produces experimental artifacts. Thin films with nanoscale thickness gradients that are rapidly deposited in open air for combinatorial and high-throughput (CHT) studies are presented. Atmospheric pressure spatial atomic layer deposition reactor heads are used to produce spatially varying chemical vapor deposition rates on the order of angstroms per second. ZnO and Al2O3 films are printed with nm-scale thickness gradients in as little as 45 s and CHT analysis of a metal-insulator-metal diode and perovskite solar cell is performed. By testing 360 Pt/Al2O3/Al diodes with 18 different Al2O3 thicknesses on one wafer, a thicker insulator layer (≈7.0 nm) is identified for optimal diode performance than reported previously. Al2O3 thin film encapsulation is deposited by atmospheric pressure chemical vapor deposition (AP-CVD) on a perovskite solar cell stack for the first time and a convolutional neural network is developed to analyze the perovskite stability. The rapid nature of AP-CVD enables thicker films to be deposited at a higher temperature than is practical with conventional methods. The CHT analysis shows enhanced stability for 70 nm encapsulation films.  相似文献   

6.
《Organic Electronics》2007,8(4):407-414
The strong sensitivity of organic/polymeric semiconductors to the exposure to O2 and H2O atmospheres makes the use of capping layers mandatory for the realization of stable devices based on such materials. In this paper we explore the realization of inorganic capping layers by atomic layer deposition (ALD) that provides smooth and pinhole-free films with a great potential as passivation layer for organic based devices. We show that the deposition of Al2O3 on transistors based on poly-3 hexyltiophene (P3HT) allows to obtain air stable devices. Whereas the growth of Al2O3 directly on the P3HT layer leads to a rough interface and significant intermixing between the oxide and the polymer, which results in a deterioration of transistor performances, an interlayer of a poly-alcohol such as poly-vinylphenol interposed between the Al2O3 and the P3HT gives a well defined Al2O3/polymer interface without degradation of the hole mobility. Transistors capped with Al2O3/PVP are very stable in air, with no appreciable differences in the electrical characteristics when measured in vacuum or in air. In addition no significant degradation of the transistors electrical properties was detected even after one month of air exposure.  相似文献   

7.
Ozone (O3) and H2O are used as the oxidant to deposit hafnium oxide (HfO2) thin films on p-type Si (1 0 0) wafers by atomic layer deposition (ALD). The physical properties and electrical characteristics of HfO2 films change greatly for different oxidants and deposition temperature. Compared with O3 as the oxidant, HfO2 films grown with H2O as the oxidant are more consistent in composition and growth rate. The O3-based HfO2 films have lower C impurity and higher concentration N impurity than the H2O-based HfO2 films. The impact of the annealing process on the electrical properties and stability of HfO2 films are also investigated. A width step is observed in the O3-based HfO2 C–V curves, which disappears after annealing process. It is because the unstable Hf–O–N and Hf–N bonds in O3-based HfO2 films are re-bonded with the non-HfO2 oxygen after annealing process, and the binding energy of N1s shifts.  相似文献   

8.
《Organic Electronics》2008,9(5):667-672
This study addresses the problem of patterning-induced degradations to organic light-emitting diodes (OLEDs) by using a thin (10 Å) atomic-layer-deposited (ALD) Al2O3 film as both an electron-injection layer and a protecting layer for the electroluminescent material, poly[1-methoxy-4-(2′-ethyl-hexyloxy)-2,5-phenylene vinylene] (MEH-PPV). With the ALD Al2O3 film, the OLEDs not only withstood an aggressive photolithographic patterning process without any degradation but unprecedentedly showed increased luminous efficiency (by 100%) and lowered turn-on voltage (by 19%) afterward. Although the ALD precursor, trimethylaluminum (TMA), was found to damage the MEH-PPV layer through electrophilic addition to the vinylene groups of MEH-PPV during the deposition of the Al2O3 film, its damaging effect was eliminated by pre-treating the MEH-PPV surface with isopropyl alcohol (IPA), whose hydroxyl groups scavenged TMA throughout the ALD process. The performance of the photo-patterned OLEDs was further improved by using a high-conductivity hole-injection layer, which increased accumulation of holes at the EL–buffer interface to enhance electron injection. The method reported herein improves the applicability of photolithography to OLED fabrication, promising to resolve the issue of patterning that has in part impeded OLED’s commercialization.  相似文献   

9.
Organic devices like organic light emitting diodes (OLEDs) or organic solar cells degrade fast when exposed to ambient air. Hence, thin-films acting as permeation barriers are needed for their protection. Atomic layer deposition (ALD) is known to be one of the best technologies to reach barriers with a low defect density at gentle process conditions. As well, ALD is reported to be one of the thinnest barrier layers, with a critical thickness – defining a continuous barrier film – as low as 5–10 nm for ALD processed Al2O3. In this work, we investigate the barrier performance of Al2O3 films processed by ALD at 80 °C with trimethylaluminum and ozone as precursors. The coverage of defects in such films is investigated on a 5 nm thick Al2O3 film, i.e. below the critical thickness, on calcium using atomic force microscopy (AFM). We find for this sub-critical thickness regime that all spots giving raise to water ingress on the 20 × 20 μm2 scan range are positioned on nearly flat surface sites without the presence of particles or large substrate features. Hence below the critical thickness, ALD leaves open or at least weakly covered spots even on feature-free surface sites. The thickness dependent performance of these barrier films is investigated for thicknesses ranging from 15 to 100 nm, i.e. above the assumed critical film thickness of this system. To measure the barrier performance, electrical calcium corrosion tests are used in order to measure the water vapor transmission rate (WVTR), electrodeposition is used in order to decorate and count defects, and dark spot growth on OLEDs is used in order to confirm the results for real devices. For 15–25 nm barrier thickness, we observe an exponential decrease in defect density with barrier thickness which explains the likewise observed exponential decrease in WVTR and OLED degradation rate. Above 25 nm, a further increase in barrier thickness leads to a further exponential decrease in defect density, but an only sub-exponential decrease in WVTR and OLED degradation rate. In conclusion, the performance of the thin Al2O3 permeation barrier is dominated by its defect density. This defect density is reduced exponentially with increasing barrier thickness for alumina thicknesses of up to at least 25 nm.  相似文献   

10.
Hybrid thin film photovoltaic structures, based on hydrogenated silicon (Si:H), organic poly(3-hexythiophene):methano-fullerenephenyl-C61-butyric-acid-methyl-ester (P3HT:PCBM) and poly(3,4ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) films, have been fabricated. Organic semiconductor thin films were deposited by spin-coating technique and were exposed to radio frequency plasma enhanced chemical vapor deposition (RF PECVD) of Si:H films at deposition temperature Td = 160 °C. Different types of structures have been investigated: H1) ITO/(p)SiC:H /P3HT:PCBM/(n) Si:H, H2) ITO/PEDOT:PSS/(i)Si:H/(n) Si:H and H3) ITO/PEDOT:PSS/P3HT:PCBM/(i)Si:H/(n)Si:H. Short circuit current density spectral response and current-voltage characteristics were measured for diagnostic of the photovoltaic performance. The current density spectral dependence of hybrid structures which contains organic layers showed improved response (50–80%) in high photon energy range (hν ≈ 3.1–3.5 eV) in comparison with Si:H reference structure. An adjustment in the absorbing layer thickness and in the contact material for ITO/PEDOT:PSS/(i)Si:H/(n)Si:H structure, resulted in a remarkably high short circuit current density (as large as 17.74 mA/cm2), an open circuit voltage of 640 mV and an efficiency of 3.75%.  相似文献   

11.
Al2O3 films were deposited using atomic layer deposition (ALD) and ultrasonic spray pyrolysis (USP) methods on p- and n-type Si substrates, n-type 4H–SiC substrates and 4H–SiC diodes for passivation studies. UV exposure in N2 atmosphere and 5% HF treatment were used as two separate surface preparation procedures prior to Al2O3 deposition. The films deposited with USP technique contain a large amount of fixed negative charge and are vulnerable to water incorporation into the material. The Al2O3 film prepared by ALD method shows much better uniformity and less negative charge. Decrease of the leakage current in the 4H–SiC diodes is observed after Al2O3 passivation using both methods.  相似文献   

12.
Atomic layer deposition is used to synthesize Al2O3:ZnO(1:x) nanolaminates with the number of deposition cycles, x, ranging from 5 to 30 for evaluation as optically transparent, electron‐selective electrodes in polymer‐based inverted solar cells. Al2O3:ZnO(1:20) nanolaminates are found to exhibit the highest values of electrical conductivity (1.2 × 103 S cm?1; more than six times higher than for neat ZnO films), while retaining a high optical transmittance (≥80% in the visible region) and a low work function (4.0 eV). Such attractive performance is attributed to the structure (ZnO crystal size and crystal alignment) and doping level of this intermediate Al2O3:ZnO film composition. Polymer‐based inverted solar cells using poly(3‐hexylthiophene) (P3HT):phenyl‐C61‐butyric acid methyl ester (PCBM) mixtures in the active layer and Al2O3:ZnO(1:20) nanolaminates as transparent electron‐selective electrodes exhibit a power conversion efficiency of 3% under simulated AM 1.5 G, 100 mW cm?2 illumination.  相似文献   

13.
《Organic Electronics》2014,15(6):1120-1125
This paper reported a low-temperature thin film encapsulation (TFE) process based on atomic layer deposition Al2O3 layer for top-emission organic light-emitting devices (TE-OLEDs). The barrier characteristics of both H2O-based and O3-based Al2O3 films were investigated. O3-based Al2O3 TFE showed lower water vapor transmission rate (WVTR) of 8.7 × 10−6 g/m2 day and longer continuous operation lifetime of 5 folds compared to the device with H2O-based Al2O3 TFE under identical environmental and driving conditions. Furthermore, the extraction of emitting light of the devices with barrier layer was enhanced compared to the bared one. The theory simulation data were consistent with our experimental results and showed the potential for the design of TFE structures optimized for enhancing light transmission.  相似文献   

14.
Successful organic photovoltaic (OPV) device fabrication is contingent on selecting an effective encapsulation barrier layer to preserve device functionality by inhibiting atmosphere-induced degradation. In this work, ultra-thin AlOx layers are deposited by atomic layer deposition (ALD) to encapsulate pre-fabricated OPV devices. A summary of ALD recipe effects (temperature, cycling time, and number of cycles) on AlOx film growth and device longevity is presented. First, AlOx film growth on the hydrophobic OPV surface is shown to occur by a 3D island growth mechanism with distinct nucleation and cluster growth regions before coalescence of a complete encapsulation layer with a thickness ⩾7 nm by 500 cycles. Encapsulated device performance testing further demonstrates that reducing ALD processing temperature to 100 °C minimizes OPV phase segregation and surface oxidation loss mechanisms as evidenced by improved short circuit current and fill factor retention when compared with the conventional 140–150 °C range. Ultra-thin AlOx encapsulation by ALD provides significant device lifetime enhancement (∼30% device efficiency after 2000 h of air exposure), which is well beyond other ALD-based encapsulation works reported in the literature. Furthermore, the interfacial bonding strength at the OPV–AlOx interface is shown to play a crucial role in determining film failure mode and therefore, directly impacts ultimate device lifetime.  相似文献   

15.
A next generation material for surface passivation of crystalline Si is Al2O3. It has been shown that both thermal and plasma‐assisted (PA) atomic layer deposition (ALD) Al2O3 provide an adequate level of surface passivation for both p‐ and n‐type Si substrates. However, conventional time‐resolved ALD is limited by its low deposition rate. Therefore, an experimental high‐deposition‐rate prototype ALD reactor based on the spatially separated ALD principle has been developed and Al2O3 deposition rates up to 1.2 nm/s have been demonstrated. In this work, the passivation quality and uniformity of the experimental spatially separated ALD Al2O3 films are evaluated and compared to conventional temporal ALD Al2O3, by use of quasi‐steady‐state photo‐conductance (QSSPC) and carrier density imaging (CDI). It is shown that spatially separated Al2O3 films of increasing thickness provide an increasing surface passivation level. Moreover, on p‐type CZ Si, 10 and 30 nm spatial ALD Al2O3 layers can achieve the same level of surface passivation as equivalent temporal ALD Al2O3 layers. In contrast, on n‐type FZ Si, spatially separated ALD Al2O3 samples generally do not reach the same optimal passivation quality as equivalent conventional temporal ALD Al2O3 samples. Nevertheless, after “firing”, 30 nm of spatially separated ALD Al2O3 on 250 µm thick n‐type (2.4 Ω cm) FZ Si wafers can lead to effective surface recombination velocities as low as 2.9 cm/s, compared to 1.9 cm/s in the case of 30 nm of temporal ALD Al2O3. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
The optical and barrier properties of thin-film encapsulations (TFEs) for top-emitting organic light-emitting diodes (TEOLEDs) were investigated using TFEs fabricated by stacking multiple sets of inorganic–organic layers. The inorganic moisture barrier layers were prepared by atomic layer deposition (ALD) of Al2O3 using trimethylaluminum (TMA) and O3 as precursors and are shown to be efficient barriers against gases and vapors. The organic alucone layers were produced by molecular layer deposition (MLD) using TMA and ethylene glycol as precursors. The [Al2O3:Alucone] ALD/MLD films were used because their adjustable inorganic–organic nanolaminate composition allows for the tuning of the optical properties, thereby enhancing their application potential for the design and fabrication of high performance light out-coupling structures for TEOLEDs. By carefully adjusting the relative thickness ratio of the inorganic–organic encapsulation materials, optimized light extraction was achieved and the films not only maintained their high moisture barrier strength but also showed excellent optical performance.  相似文献   

17.
We report on the adhesion of weak interfaces in inverted P3HT:PCBM-based polymer solar cells (OPV) with either a conductive polymer, PEDOT:PSS, or a metal oxide, molybdenum trioxide (MoO3), as the hole transport layer. The PEDOT:PSS OPVs were prepared by spin or spray coating on glass substrates, or slot-die coating on flexible PET substrates. In all cases, we observed adhesive failure at the interface between the P3HT:PCBM with PEDOT:PSS layer. The adhesion energy measured for the solar cells made on glass substrates was about 1.8 J/m2, but only 0.5 J/m2 for the roll-to-roll processed flexible solar cells. The adhesion energy was insensitive to the PEDOT:PSS layer thickness in the range of 10–40 nm. A marginal increase in adhesion energy was measured with increased O2 plasma power. Compared to solution processed PEDOT:PSS, we found that thermally evaporated MoO3 adheres less to the P3HT:PCBM layer, which we attributed to the reduced mixing at the MoO3/P3HT:PCBM interface during the thermal evaporation process. Insights into the mechanisms of delamination and the effect of different material properties and processing parameters yield general guidelines for the design of more reliable organic photovoltaic devices.  相似文献   

18.
Structural and electrical properties of Al‐doped ZnO (AZO) films deposited by atomic layer deposition (ALD) are investigated to study the extrinsic doping mechanism of a transparent conducting oxide. ALD‐AZO films exhibit a unique layer‐by‐layer structure consisting of a ZnO matrix and Al2O3 dopant layers, as determined by transmission electron microscopy analysis. In these layered AZO films, a single Al2O3 dopant layer deposited during one ALD cycle could provide ≈4.5 × 1013 cm?2 free electrons to the ZnO. The effective field model for doping is suggested to explain the decrease in the carrier concentration of ALD‐AZO films when the interval between the Al2O3 layers is reduced to less than ≈2.6 nm (>3.4 at% Al). By correlating the electrical and structural properties, an extrinsic doping mechanism of ALD‐AZO films is proposed in which the incorporated Al atoms take oxygen from the ZnO matrix and form doubly charged donors, such as oxygen vacancies or zinc interstitials.  相似文献   

19.
A series of indole-substituted fulleropyrrolidine derivatives with different side groups on a pyrrolidine rings, including methyl (OIMC60P), benzyl (OIBC60P), 2,5-difluoroinebenzyl (OIB2FC60P), and 2,3,4,5,6-pentafluoroinebenzyl (OIB5FC60P), have been synthesized and used as electron acceptor in the active layer of polymer-fullerene solar cells to investigate the effect of various substitute groups on the electronic structures, morphologies, and device performances. Optical absorption, electrochemical properties and solubility of the fullerene derivatives have been explored and compared. The inverted photovoltaic devices with the configuration ITO/ZnO/Poly(3-hexylthiophene)(P3HT):[60]fullerene derivatives/MoO3/Ag have been prepared including the reference cell based on the P3HT: methyl [6,6]-phenyl-C61-butylate (PCBM) blend films. All the devices properties were measured in air without encapsulation. We also investigated the effect of the thermal annealing on the crystallinity and morphology of the active layer and the device performance. The device based on the blend film of P3HT and OIBC60P showed a power conversion efficiency of 2.46% under illumination by AM1.5G (100 mW/cm2) after the annealing treatment at 120 °C for 10 min in air.  相似文献   

20.
In this paper the electrical characteristics of different atomic layer deposited (ALD) high permittivity dielectric films (Al2O3 and Al2O3/HfO2 nanolaminates) subjected to ion irradiation (25 MeV oxygen ions and 10 MeV protons) are evaluated. The capacitance-voltage (C-V) and current-voltage (I-V) characterization show that high-κ nanolaminates are more tolerant to radiation than the Al2O3 layers, but suffer radiation soft breakdown (RSBD) events. The main variation on the electrical characterization could be interpreted as a gradual decrease of the dielectric constant and/or as an increase of the series resistance of the device.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号