首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An anhydride-cured thermosetting epoxy polymer was modified by incorporating 10 wt.% of well-dispersed silica nanoparticles. The stress-controlled tensile fatigue behaviour at a stress ratio of R = 0.1 was investigated for bulk specimens of the neat and the nanoparticle-modified epoxy. The addition of the silica nanoparticles increased the fatigue life by about three to four times. The neat and the nanoparticle-modified epoxy resins were used to fabricate glass fibre reinforced plastic (GFRP) composite laminates by resin infusion under flexible tooling (RIFT) technique. Tensile fatigue tests were performed on these composites, during which the matrix cracking and stiffness degradation was monitored. The fatigue life of the GFRP composite was increased by about three to four times due to the silica nanoparticles. Suppressed matrix cracking and reduced crack propagation rate in the nanoparticle-modified matrix were observed to contribute towards the enhanced fatigue life of the GFRP composite employing silica nanoparticle-modified epoxy matrix.  相似文献   

2.
Nanoparticle filling is a feasible way to increase the mechanical properties of polymer matrices. Abundant research work has been published in the last number of years concerning the enhancement of the mechanical properties of nanoparticle filled polymers, but only a reduced number of studies have been done focusing on the fatigue behaviour. This work analyses the influence of nanoclay reinforcement and water presence on the fatigue behaviour of epoxy matrices. The nanoparticles were dispersed into the epoxy resin using a direct mixing method. The dispersion and exfoliation of nanoparticles was characterised by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Fatigue strength decreased with the nanoclay incorporation into the matrix. Fatigue life of nanoclay filled composites was significantly reduced by the notch effect and by the immersion in water.  相似文献   

3.
In the present work, fatigue crack growth tests of epoxy resin composite reinforced with silica particle under various R-ratios were carried out to investigate the effect of R-ratio on crack growth behavior and to discuss fatigue crack growth mechanism. Crack growth curves arranged by ΔK showed clear R-ratio dependence even under no crack closure, where the values of ΔKth were 0.82 and 0.33 MPa √m for R = 0.1 and 0.7 respectively. However, crack growth curves arranged by Kmax merged into almost one curve regardless of R-ratio, which indicated that crack growth behavior of the present composite was time-dependent. The value of Kmax,th were in the range from 0.78 to 1.12 MPa √m. In situ crack growth observation revealed the crack growth mechanism: micro-cracking near the interface between silica particle and resin matrix occurs ahead of a main crack and then micro-cracks coalesce with a main crack to grow. The crack path was in the epoxy matrix, which was consistent with the time-dependent crack growth.  相似文献   

4.
An experimental study is described in this paper dealing with the tensile–tensile fatigue and the quasi-static post-fatigue tensile behaviour of a structurally stitched multi-ply carbon composite and the unstitched counterpart. The influence of the stitching on the fatigue life and on the residual post-fatigue quasi-static properties in two principal direction is investigated. The fatigue behaviour of both composites is represented by Wöhler-like diagrams. The damage imparted during fatigue is studied by X-ray analyses. The residual mechanical properties of the fatigued composites after different number of cycles are compared in term of stiffness and strength. The post-fatigue quasi-static tensile tests include acoustic emission (AE) registration and full-field surface strain mapping (SM) to investigate the damage onset and development. The main conclusions of the experimental work are: the fatigue life is improved in the direction of the structural stitching and is reduced in the orthogonal direction; for the considered cyclic stress level the post-fatigue reduction of the mechanical properties is limited by the structural stitching.  相似文献   

5.
Helicopter blades are made of composite materials mainly loaded in fatigue and have normally relatively thin skins. A through-the-thickness crack could appear in these skins. The aim of this study is to characterize the through-the-thickness crack propagation due to fatigue in thin woven glass fabric laminates. A technological test specimen is developed to get closer to the real loading conditions acting on these structures. An experimental campaign is undertaken which allows evaluating crack growth rates in several laminates. The crack path is linked through microscopic investigations to specify damage in woven plies. Crack initiation duration influence on experimental results is also underlined.  相似文献   

6.
This paper presents the results of current research on the fatigue life prediction of carbon/epoxy laminate composites involving twelve balanced woven bidirectional layers of carbon fibres and epoxy resin manufactured by a vacuum moulding method. The plates were produced with 3 mm thickness and 0.66 fibre weight fraction. The dog bone shape specimens were cut from these plates with the load line aligned with one of the fibre directions. The fatigue tests were performed using load control with a frequency of 10 Hz and at room temperature. The fatigue behaviour was studied for different stress ratios and for variable amplitude block loadings. The damage process was monitored in terms of the stiffness loss. The fatigue life of specimens submitted to block loading tests was modelled using Palmgren–Miner’s law and taking in to account the stress ratio effect. The estimated and experimental fatigue lives were compared and good agreement was observed.  相似文献   

7.
For the simulation of the material degradation process during multiaxial fatigue loading of 3D textile-reinforced composites a new physically based damage model is developed based on the fracture mode concept (FMC) of CUNTZE and the continuum damage mechanics. For the damage analysis and the model parameter identification cyclic tests under superposed tension/compression–torque loading are performed.  相似文献   

8.
The aim of the present work is to investigate the influence of the reinforcing material and architecture on the voids content, mechanical properties and tribological behavior of fiber reinforced epoxy composite laminates manufactured by VARTM under different processing conditions. Two different textile architectures, namely unidirectional non-crimp fabrics (UD) and 0/90 plain wave (PW), were considered, reinforcing an EPIKOTE RIMR 135 epoxy matrix with glass (GF) as well as carbon (CF) continuous fibers. Optical observations revealed an unexpected trend relatively to the intra- and inter-bundle voids concentration with respect to the impregnation velocity, especially using UD-CF and UD-GF reinforcements and low impregnation rate. Tensile and three points bending tests highlighted the dominant role of fiber material and architecture on mechanical properties, whereas the presence of voids played a minor role with respect to the analyzed features. Tribological outcomes evidenced a reduction of the friction coefficient (μ) when the resin is reinforced by carbon or glass fibers. The lowest values were detected when the sliding direction of the counterbody is oriented parallel to the fiber direction for UD samples. Further reduction of μ, for both UD and PW specimens, was obtained by interposing a lubricant at the interface.  相似文献   

9.
We investigate the cryogenic delamination growth behavior in woven glass fiber reinforced polymer (GFRP) composite laminates under mixed-mode II/III fatigue loading. Fatigue delamination tests were conducted with six-point bending plate (6PBP) specimens at room temperature, liquid nitrogen temperature (77 K) and liquid helium temperature (4 K), and the delamination growth rate data for various mixed-mode ratios of Modes II and III were obtained. The energy release rate was evaluated using the three-dimensional finite element method. In addition, the fatigue delamination growth mechanisms were characterized by scanning electron microscopic observations of the specimen fracture surfaces.  相似文献   

10.
对比研究了环氧5228A树脂及碳纤维/环氧5228A树脂复合材料层合板在3种湿热环境(水煮、70℃水浸,70℃85%相对湿度)下的湿热性能,考察了湿热条件对复合材料层间剪切性能的影响规律,并从吸湿特性、物理化学特性、树脂力学性能、湿应力等方面分析了不同湿热环境下复合材料性能衰减的机制。研究表明,碳纤维/高温固化环氧树脂复合材料层间剪切性能主要是由吸湿率决定,相同吸湿率不同湿热条件下性能的下降幅度基本相同;3种湿热条件下该树脂及其复合材料未发生化学反应、微裂纹等不可逆变化,复合材料层合板湿热老化机制主要是吸入水分后基体增塑和树脂、纤维湿应变不一致导致的湿应力对复合材料性能的负面作用。  相似文献   

11.
An experimental study of the in-plane tension-tension fatigue behavior of the carbon fiber/epoxy matrix composite reinforced with non-crimp 3D orthogonal woven fabric is presented. The results include pre-fatigue quasi-static test data, fatigue life diagrams, fatigue damage progression, and post-fatigue quasi-static test data for the warp- and fill-directional loading cases. It is revealed that the maximum cycle stress corresponding to at least 3 million cycles of fatigue life without failure, is in the range of 412-450 MPa for both loading directions. This stress range is well above the static damage initiation threshold and significantly above the first static damage threshold (determined by the onset of low energy acoustic emission). The second static damage threshold, determined by the onset of high energy acoustic emission and related to the appearance of local debonds and intensive transverse matrix cracking falls within this range. The established correlation between a 3000,000 cycle fatigue stress limit on one side and the second static damage threshold stress on the other is of a high practical importance, because it will significantly reduce the amount of future fatigue tests required for this class of composites. Surprisingly, for equal maximum cycle stress level, the fatigue life under fill-directional loading appears about three times shorter than that under warp-directional loading. The 100,000 cycle, 500,000 cycle and 1000,000 cycle fatigue loading with 450 MPa maximum cycle stress has resulted in so high variations of post-fatigue static modulus, strength and ultimate strain, that no consistent and statistically meaningful trends could have been established; further extensive experimental studies are required to reliably quantify this effect.  相似文献   

12.
This paper investigates the fatigue delamination growth behavior in woven glass fiber reinforced polymer (GFRP) composite laminates under mixed-mode I/II conditions at cryogenic temperatures. Fatigue delamination tests were performed with the mixed-mode bending (MMB) test apparatus at room temperature, liquid nitrogen temperature (77 K) and liquid helium temperature (4 K), in order to obtain the delamination growth rate as a function of the range of the energy release rate, and the dependence of the delamination growth behavior on the temperature and the mixed-mode ratio of mode I and mode II was examined. The energy release rate was evaluated using three-dimensional finite element analysis. The fractographic examinations by scanning electron microscopy (SEM) were also carried out to assess the mixed-mode fatigue delamination growth mechanisms in the woven GFRP laminates at cryogenic temperatures.  相似文献   

13.
The failure envelope of the matrix in composite laminates under compressive loads has not received much attention in literature. There are very little to no experimental results to show a suitable failure envelope for this constituent found in composites. With increasing popularity in the use of micromechanical analysis to predict progressive damage of composite structures which requires the use of individual failure criteria for the fibre and matrix, it is important that matrix behaviour under compression is modelled correctly.In this study, off-axis compression tests under uniaxial compression loading are used to promote matrix failure. Through the use of micromechanical analysis involving Representative Volume Elements, the authors were able to extract the principal stresses on the matrix at failure. The results indicated that hydrostatic stresses play an important role in the failure of the matrix. Thus, Drucker–Prager failure criterion is recommended when modelling compressive matrix failure in composite structures.  相似文献   

14.
This paper addresses the effect of temperature on the mixed-mode interlaminar fracture toughness and fatigue delamination growth rate of a carbon-fibre/epoxy material, namely IM7/8552. Quasi-static and fatigue characterisation tests were carried out at −50 °C, 20 °C, 50 °C and 80 °C, using asymmetric cut-ply coupons. The experimental results show that temperature may have an accelerating or delaying effect on delamination growth, depending on the loading regime, i.e. either quasi-static or fatigue. Fractographic examinations were also carried out in order to assist the interpretation of the experimental data. A semi-empirical equation is introduced to describe the experimentally observed fatigue delamination growth rates at elevated temperatures.  相似文献   

15.
Nanoparticle reinforcement of the matrix in laminates has been recently explored to improve mechanical properties, particularly the interlaminar strength. This study analyses the fatigue behaviour of nanoclay and multiwalled carbon nanotubes enhanced glass/epoxy laminates. The matrix used was the epoxy resin Biresin® CR120, combined with the hardener CH120-3. Multiwalled carbon nanotubes (MWCNTs) 98% and organo-montmorillonite Nanomer I30 E nanoclay were used. Composites plates were manufactured by moulding in vacuum. Fatigue tests were performed under constant amplitude, both under tension–tension and three points bending loadings. The fatigue results show that composites with small amounts of nanoparticles addition into the matrix have bending fatigue strength similar to the obtained for the neat glass fibre reinforced epoxy matrix composite. On the contrary, for higher percentages of nanoclays or carbon nanotubes addition the fatigue strength tend to decrease caused by poor nanoparticles dispersion and formation of agglomerates. Tensile fatigue strength is only marginally affected by the addition of small amount of particles. The fatigue ratio in tension–tension loading increases with the addition of nanoclays and multi-walled carbon nanotubes, suggesting that both nanoparticles can act as barriers to fatigue crack propagation.  相似文献   

16.
研究了三维五向编织/环氧树脂复合材料和树脂基层合复合材料在室温、80℃、150℃和180℃的拉伸性能,讨论了不同温度对三维五向编织复合材料和层合复合材料拉伸的影响规律。研究结果表明,三维五向编织复合材料在80℃、150℃时的拉伸强度与室温相近,而在180℃时,比室温时的拉伸强度下降了15.37%;层合复合材料在80℃、150℃和180℃时的拉伸强度则比室温分别下降了3.45%、13.3%和34.42%。造成层合复合材料高温拉伸强度下降较大的原因是:在高温时,由于树脂被破坏,使层合复合材料发生了分层。说明相同树脂基体的复合材料,增强体结构对复合材料在高温时的拉伸性能有着重要的影响。  相似文献   

17.
The dynamic tensile properties of carbon fiber (CF) composite loaded in the matrix-dominant direction are experimentally determined. In this study, thermoplastic epoxy resin is used as a matrix of the CF composite. A dynamic tensile test is performed using a tension-type split Hopkinson bar technique. The experimental results show that there are not linear relationships between tensile strength and strain rate in case of the 10°, 30° and 45° specimens, although the tensile strength of CF composite, whose matrix is typical thermosetting epoxy resin, linearly increases with the strain rate for all fiber orientation angles. From the fracture surface observation, it is found that the ductile fracture of the matrix can be observed only when 10° off-axis specimen is tested under dynamic loading condition. It is inferred that the softening of the thermoplastic epoxy resin in the vicinity of interface area takes place with increasing strain rate.  相似文献   

18.
Fatigue propagation of a through-the-thickness crack in thin woven glass laminates is difficult to model when using homogeneous material assumption. Crack growth depends on both the fatigue behaviour of the fibres and of the matrix, these two phenomena occurring at different time and space scales. The developed finite element model is based on the architecture of the fabric and on the fatigue behaviours of the matrix and the fibre, even if the pure resin and fibre behaviours are not used. That thus limits the physical meaning of this model. Basically, the objective of this simulation is to illustrate and to confirm proposed crack growth mechanism. The fatigue damage matrix is introduced with user spring elements that link the two fibre directions of the fabric. Fibre fatigue behaviour is based on the S-N curves. Numerical results are compared to experimental crack growth rates and observed damage in the crack tip. Relatively good agreement between predictions and experiments was found.  相似文献   

19.
The transverse damage initiation and extension of a unidirectional laminated composite under transverse tensile/compressive loading are evaluated by means of Representative Volume Element (RVE) presented in this paper based on an advanced homogenization model called finite-volume direct averaging micromechanics (FVDAM) theory. Fiber, fiber-matrix interface and matrix phases are considered within the RVE in determining fiber-matrix interface debonding and matrix cracking. The simulated fracture patterns are shown to be in good agreement with experimental observations.  相似文献   

20.
A generic approach to constitutive modelling of composite delamination under mixed mode loading conditions is developed. The proposed approach is thermodynamically consistent and takes into account two major dissipative mechanisms in composite delamination: debonding (creation of new surfaces) and plastic/frictional deformation (plastic deformation of resin and/or friction between crack surfaces). The coupling between these two mechanisms, experimentally observed at the macro scales through the stiffness reduction and permanent crack openings, is usually not considered in depth in many cohesive models in the literature. All model parameters are shown to be identifiable and measurable from experiments. The model prediction of mixed-mode delamination is in good agreement with benchmarked mixed-mode bending experiments. It is further shown that accounting for all major dissipative mechanisms in the modelling of delamination is the key to the accurate prediction of both resistance and damage of the interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号