首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 109 毫秒
1.
普通光纤与小芯径实芯光子晶体光纤的塌孔熔接技术   总被引:3,自引:1,他引:2  
光子晶体光纤(PCF)和普通光纤的熔接损耗主要来源于两光纤模场直径(MFD)的失配。提出了一种小芯径光子晶体光纤和大模场直径普通光纤低损耗熔接的方法。利用熔融拉锥机加热光子晶体光纤来精确控制光子晶体光纤的空气孔塌缩,以增加光子晶体光纤的模场直径,从而降低其与大模场直径普通光纤的熔接损耗。实现了模场直径为3.94μm的光子晶体光纤和模场直径为10.4μm普通光纤的低损耗熔接,最低损耗小于0.2 dB。  相似文献   

2.
王润轩 《激光技术》2008,32(3):302-304
为了从理论上求解光子晶体光纤的接续损耗问题,采用全矢量模型,计算了全反射式光子晶体光纤、高非线性光子晶体光纤的模场半径,给出了模场半径随空气孔间距、空气孔半径以及掺杂比例的变化关系,并在此基础上分析计算了光子晶体光纤与普通单模光纤的接续损耗,得到了理论上零损耗时的光子晶体光纤的模场半径。结果表明,模场失配是高非线性光子晶体光纤与普通单模光纤以及与一般全反射式光子晶体光纤接续损耗的最主要因素,合理的设计有望实现模场匹配,将接续损耗降到最小程度。  相似文献   

3.
为了实现光子晶体光纤与普通光纤低损耗熔接,采用优化熔接机参量和逐渐塌缩光子晶体光纤空气孔的方法,对光子晶体光纤和普通光纤熔接损耗的主要来源及普通熔接机参量的选择进行了详细的理论分析,并对光子晶体光纤和普通光纤模场直径相匹配和不匹配两种情况分别进行了熔接实验研究,取得了小于0.2dB和0.3dB的熔接损耗.结果表明,通过...  相似文献   

4.
多芯光子晶体光纤(MCPCF)是实现高功率超连续谱输出的一个重要研究方向,而如何解决多芯光子晶体光纤的低损耗熔接问题是实现全光纤化的关键。介绍了一种通过选择性空气孔塌缩技术实现七芯光子晶体光纤低损耗熔接的方法。数值模拟了处理前后七芯光子晶体光纤的模场特性以及对熔接损耗的影响。实验上对七芯光子晶体光纤进行了选择性空气孔塌缩处理,实现了和纤芯直径为15μm的双包层光纤的低损耗熔接,损耗值为0.22dB。  相似文献   

5.
高非线性光子晶体光纤与单模光纤低损耗熔接实验   总被引:6,自引:0,他引:6  
张巍  张磊  陈实  蔡青  黄翊东  彭江得 《中国激光》2006,33(10):389-1392
在理论分析基础上,采用常规电弧放电熔接技术,在1550 nm波段对高非线性光子晶体光纤(PCF)与单模光纤(SMF)的熔接损耗机制进行了实验研究,指出模场失配是造成两者直接熔接损耗的主要因素;而熔接过程中因放电电流过大或放电时间过长所导致的光子晶体光纤的包层气孔形变以致塌陷,会引起超过10 dB的附加损耗。采用过渡光纤有效地缓解了两种光纤模场的失配;通过优化放电参数,有效地避免了光子晶体光纤包层气孔的塌陷,实现了高非线性光子晶体光纤和单模光纤的低损耗(<1 dB)熔接。  相似文献   

6.
在光子晶体光纤(PCFs)的熔接过程中,熔接能量和加热时间的控制是避免空气孔塌陷的关键所在.应用经典力学理论,提出了一种光子晶体光纤熔接过程中力学特性的数学模型,对熔接过程中光子晶体光纤空气孔的畸变情况及畸变对光纤模场分布变化引起的熔接损耗进行了分析.分析结果表明,通过控制熔接能量和熔接时间可以控制光子晶体光纤空气孔的畸变情况.根据理论分析结果,进行熔接实验,分析空气孔畸变引起的损耗情况.实验结果与理论值有很好的一致性.  相似文献   

7.
分别分析了不同空气填充率光子晶体光纤与普通单模光纤熔接过程中损耗的来源和制约机制,实验研究了熔接参数对熔接效果的影响,包括熔接损耗随放电电流、放电时间和放电功率变化的情况。通过优化调整熔接参数,对高空气填充率和低空气填充率的两种光子晶体光纤都实现了低损耗熔接,熔接损耗为0.22 dB。并利用掺镱大模场面积光子晶体光纤飞秒激光放大器作为抽运源,在抽运功率为14.7 W时,实验得到了7.45 W的高功率超连续光谱输出,光谱覆盖范围650~1 750 nm。  相似文献   

8.
新型大模场光子晶体光纤传输系统及其传输特性分析   总被引:1,自引:0,他引:1  
张银  陈明阳  张永康 《中国激光》2012,39(12):1205001-108
通过在多模光子晶体光纤的两端分别连接一根单模光子晶体光纤,对其选择合适的参数,形成一种可以实现低弯曲损耗、大模场单模传输的光纤传输系统。运用数值仿真,分析了该传输系统在模场面积、弯曲损耗、连接损耗等方面的特性。研究结果表明,多模光子晶体光纤与单模光子晶体光纤所组成的系统可实现有效的单模传输;工作波长为1064nm时,多模光子晶体光纤在直波导状态时的基模模场面积可达1593μm2;在弯曲半径低至10cm时,多模光子晶体光纤仍然可以保持低损耗传输。经过对多模光子晶体光纤结构参数的优化,其与单模光子晶体光纤的连接损耗降低至0.085dB。  相似文献   

9.
光子晶体光纤耦合损耗的数值研究   总被引:1,自引:1,他引:0  
王润轩 《激光技术》2007,31(5):493-493
光子晶体光纤(PCF)与普通单模光纤(SMF)以及不同结构光子晶体光纤之间的耦合损耗是急待解决的问题,采用光子晶体光纤的本地正交函数模型,对光子晶体光纤与普通单模光纤以及不同结构光子晶体光纤之间的耦合损耗进行了分析计算,得到了耦合损耗随光子晶体光纤结构参量以及波长的变化关系,给出了最优耦合的光子晶体光纤的结构参量。结果表明,PCF的孔距Λ是影响PCF与SMF耦合损耗的最主要因素,当Λ为某个特定值时,PCF与SMF的模场半径相等,耦合损耗最小,偏离这个特定值时的耦合损耗都会增大;PCF之间的耦合损耗取决于它们孔距的差异;此外由于模场半径与波长有关,当波长为某个特定值时,PCF与SMF模场半径相等,此时耦合损耗也最小。因此,在PCF设计过程中应综合考虑这些相关因素。  相似文献   

10.
提出了一种新型掺锗芯低弯曲损耗光子晶体光纤。通过调整结构参数,实现了单模低弯曲损耗传输,与标准单模光纤有较好的适配性。仿真结果表明,波长1550nm处,弯曲半径为5mm时,基模损耗为0.014dB/km;弯曲半径为4mm时,基模损耗为0.42dB/km,能承受的弯曲半径小。显示了光子晶体光纤具有成为光纤到户"最后一公里"主要通信介质的性能优势。  相似文献   

11.
一种基于段落同现频率的加权方法   总被引:1,自引:1,他引:0  
聚类算法的研究已经非常成熟了,但是这些聚类算法一般都是基于数值型信息,所以怎样把现有的一些经典聚类算法有效地应用到文本聚类,特别是中文文本聚类是一个非常重要的问题。文中提出了一种基于语义分析,利用段落同现频率来加权特征向量权值的方法。实验证明:基于语义分析特征向量加权的方法能够提高10%左右的文本聚类效果。同时,文中还研究了段落同现频率阈值选取问题,发现段落同现频率阈值选取大小对聚类效果有很大影响。  相似文献   

12.
基于紫外写入PCFBG的实验研究   总被引:1,自引:0,他引:1  
光子晶体光纤Bragg光栅(PCFBG)是构建光子晶体光纤激光器的重要部件。利用高压载氢增敏技术和紫外聚焦加扫描写入法在光子晶体光纤上成功制作出了1058nm波段的Bragg光栅。同时结合理论模型,对PCFBG的性能进行了实验研究,并对光栅写入过程中存在的一些现象进行了分析。  相似文献   

13.
王婷婷  李志鹏  沈娟 《半导体光电》2017,38(6):798-801,805
设计了一种新型的在线光纤法布里-珀罗(F-P)压力传感器.该传感器的F-P腔为微椭球空气腔,由光纤熔接机以特定的熔接参数熔接单模光纤和实芯光子晶体光纤而成.该传感器基于F-P干涉原理测量压力,全石英结构,制作工艺简单,温度串扰小.分析了封闭的椭球形空气F-P腔中短轴直径(腔长)与长轴半径(敏感膜有效半径)的关系;利用高斯光束传输理论分析了空气F-P腔形状与腔内损耗的关系.分析了SiO2敏感膜受压后中心挠度与膜厚、有效半径的关系.建立了SiO2膜的压力敏感特性模型,在施加均布载荷条件下对模型的挠度形变特性进行了数值解析和有限元仿真.仿真了传感器F-P干涉条纹波谷波长与压力的关系,为设计制作光纤微压传感器提供了理论依据.  相似文献   

14.
徐婷 《电子质量》2011,(11):6-7,15
信号特征参数的测量,是信号处理的一项重要任务。该文利用MATLAB产生基带信号.根据FFT测量方法,通过对信号加窗,采用快速傅里叶变换,运用周期图法进行功率谱估计,并调用IQmath等相关库函数,在TI公司的定点DSP上实现了信号的频率测量。  相似文献   

15.
非均匀孔径光子晶体光纤的模式截止   总被引:6,自引:0,他引:6  
对于非均匀孔径光子晶体光纤(PCF)模式截止特性的分析,基于基空间填充模(FSM)的方法不再适用。使用全矢量超格子模型给出了光子晶体光纤模场半径的计算方法,并提出通过分析各模式模场半径的突变现象可以判断模式截止,使用该方法对双孔保偏光子晶体光纤和最内层为小孔的光子晶体光纤模式截止特性作了分析和讨论,结果表明,通过该方法能准确地判断非均匀孔径光子晶体光纤中的模式截止,只要波长扫描的精度足够高就能精确地求解出各个模式的截止波长。  相似文献   

16.
采用商用的光纤熔接机实现了高非线性光子晶体光纤和单模光纤之间的熔接,给出了熔接的过程并指出了熔接过程中要注意的问题.分析了影响熔接损耗的主要因素,理论分析结果和实验结果是一致的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号