首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the paper, a well-known predictive functional control strategy is extended to nonlinear processes. In our approach the predictive functional control is combined with a fuzzy model of the process and formulated in the state space domain. The prediction is based on a global linear model in the state space domain. The global linear model is obtained by the fuzzy model in Takagi–Sugeno form and actually represents a model with changeable parameters. A simulation of the system, which exhibits a strong nonlinear behaviour together with underdamped dynamics, has evaluated the proposed fuzzy predictive control. In the case of underdamped dynamics, the classical formulation of predictive functional control is no longer possible. That was the main reason to extend the algorithm into the state space domain. It has been shown that, in the case of nonlinear processes, the approach using the fuzzy predictive control gives very promising results.  相似文献   

2.
In this paper a new approach to the control of a nonlinear, time-varying process is proposed. It is based on a recursive version of the fuzzy identification method and predictive functional control. First, the recursive fuzzy identification method is derived, after which it is used in connection with fuzzy predictive functional control to construct an adaptive fuzzy predictive functional controller. The adaptive FPFC is then tested on a nonlinear, time-varying, semi-batch reactor process and compared with the standard FPFC, which uses non-adaptive fuzzy model. The simulation results are promising; they indicate that the control of time-varying, nonlinear processes with the FPFC can be improved with the use of an adaptive fuzzy model. An improvement in reference tracking and disturbance rejection can be observed, but the main advantage is the reduced number of switchings between hot and cold water. This is an important improvement in the case of real applications.  相似文献   

3.
Hybrid Fuzzy Modelling for Model Predictive Control   总被引:1,自引:0,他引:1  
Model predictive control (MPC) has become an important area of research and is also an approach that has been successfully used in many industrial applications. In order to implement a MPC algorithm, a model of the process we are dealing with is needed. Due to the complex hybrid and nonlinear nature of many industrial processes, obtaining a suitable model is often a difficult task. In this paper a hybrid fuzzy modelling approach with a compact formulation is introduced. The hybrid system hierarchy is explained and the Takagi–Sugeno fuzzy formulation for the hybrid fuzzy modelling purposes is presented. An efficient method for identifying the hybrid fuzzy model is also proposed. A MPC algorithm suitable for systems with discrete inputs is treated. The benefits of the MPC algorithm employing the hybrid fuzzy model are verified on a batch-reactor simulation example: a comparison between the proposed modern intelligent (fuzzy) approach and a classic (linear) approach was made. It was established that the MPC algorithm employing the proposed hybrid fuzzy model clearly outperforms the approach where a hybrid linear model is used, which justifies the usability of the hybrid fuzzy model. The hybrid fuzzy formulation introduces a powerful model that can faithfully represent hybrid and nonlinear dynamics of systems met in industrial practice, therefore, this approach demonstrates a significant advantage for MPC resulting in a better control performance.  相似文献   

4.
Model predictive control (MPC) schemes are now widely used in process industries for the control of key unit operations. Linear model predictive control (LMPC) schemes which make use of linear dynamic model for prediction, limit their applicability to a narrow range of operation (or) to systems which exhibit mildly nonlinear dynamics.

In this paper, a nonlinear observer based model predictive controller (NMPC) for nonlinear system has been proposed. An approach to design NMPC based on fuzzy Kalman filter (FKF) and augmented state fuzzy Kalman filter (ASFKF) has been presented. The efficacy of the proposed NMPC schemes have been demonstrated by conducting simulation studies on the continuous stirred tank reactor (CSTR). The analysis of the extensive dynamic simulation studies revealed that, the NMPC schemes formulated produces satisfactory performance for both servo and regulatory problems. Simulation results also include an inferential control case, where the reactor concentration is not measured but estimated from temperature measurement and used in the NMPC based on FKF and ASFKF formulations.  相似文献   


5.
模糊广义预测控制及其应用   总被引:35,自引:1,他引:34  
本文将单变量广义预测控制原理应用到多变量模糊系统,提出了一种基于辨识模糊模型 的多变量预测控制方法.仿真研究表明,该模糊广义预测控制方法适用于工业过程的动态辨 识和控制,交能取得良好的效果.  相似文献   

6.
一种新的预测控制算法:模糊预测控制算法*   总被引:11,自引:0,他引:11  
将模糊控制与预测控制相结合,提出了一种基于被控对象一般形式的时间离散模型的模糊预测控制算法,并对控制算法的有效性进行了分析,仿真研究结果表明,该模糊预测控制算法既适用于线性对象,也可用于非线性对象的控制。  相似文献   

7.
Interval type-2 fuzzy inverse controller design in nonlinear IMC structure   总被引:1,自引:0,他引:1  
In the recent years it has been demonstrated that type-2 fuzzy logic systems are more effective in modeling and control of complex nonlinear systems compared to type-1 fuzzy logic systems. An inverse controller based on type-2 fuzzy model can be proposed since inverse model controllers provide an efficient way to control nonlinear processes. Even though various fuzzy inversion methods have been devised for type-1 fuzzy logic systems up to now, there does not exist any method for type-2 fuzzy logic systems. In this study, a systematic method has been proposed to form the inverse of the interval type-2 Takagi-Sugeno fuzzy model based on a pure analytical method. The calculation of inverse model is done based on simple manipulations of the antecedent and consequence parts of the fuzzy model. Moreover, the type-2 fuzzy model and its inverse as the primary controller are embedded into a nonlinear internal model control structure to provide an effective and robust control performance. Finally, the proposed control scheme has been implemented on an experimental pH neutralization process where the beneficial sides are shown clearly.  相似文献   

8.
This paper proposes a method for adaptive identification and control for industrial applications. The learning of a T–S fuzzy model is performed from input/output data to approximate unknown nonlinear processes by a hierarchical genetic algorithm (HGA). The HGA approach is composed by five hierarchical levels where the following parameters of the T–S fuzzy system are learned: input variables and their respective time delays, antecedent fuzzy sets, consequent parameters, and fuzzy rules. In order to reduce the computational cost and increase the algorithm’s performance an initialization method is applied on HGA. To deal with nonlinear plants and time-varying processes, the T–S fuzzy model is adapted online to maintain the quality of the identification/control. The identification methodology is proposed for two application problems: (1) the design of data-driven soft sensors, and (2) the learning of a model for the Generalized predictive control (GPC) algorithm. The integration of the proposed adaptive identification method with the GPC results in an effective adaptive predictive fuzzy control methodology. To validate and demonstrate the performance and effectiveness of the proposed methodologies, they are applied on identification of a model for the estimation of the flour concentration in the effluent of a real-world wastewater treatment system; and on control of a simulated continuous stirred tank reactor (CSTR) and on a real experimental setup composed of two coupled DC motors. The results are presented, showing that the developed evolving T–S fuzzy model can identify the nonlinear systems satisfactorily and it can be used successfully as a prediction model of the process for the GPC controller.  相似文献   

9.
In the paper a fuzzy model based predictive control algorithm is presented. The proposed algorithm is developed in the state space and is given in analytical form, which is an advantage in comparison with optimisation based control schemes. Fuzzy model-based predictive control is potentially interesting in the case of batch reactors, heat-exchangers, furnaces and all the processes with strong nonlinear dynamics and high transport delays. In our case it is implemented to a continuous stirred-tank simulated reactor and compared to optimal PI control. Some stability and design issues of fuzzy model-based predictive control are also given.  相似文献   

10.
This paper presents a design methodology for predictive control of industrial processes via recurrent fuzzy neural networks (RFNNs). A discrete-time mathematical model using RFNN is constructed and a learning algorithm adopting a recursive least squares (RLS) approach is employed to identify the unknown parameters in the model. A generalized predictive control (GPC) law with integral action is derived based on the minimization of a modified predictive performance criterion. The stability and steady-state performance of the resulting control system are studied as well. Two examples including the control of a nonlinear process and the control of a physical variable-frequency oil-cooling machine are used to demonstrate the effectiveness of the proposed method. Both results from numerical simulations and experiments show that the proposed method is capable of controlling industrial processes with satisfactory performance under setpoint and load changes.  相似文献   

11.
质子交换膜燃料电池(PEMFC)是21世纪最有前景的发电技术之一。该文针对PEMFC等一类具有严重非线性的复杂被控对象,提出一种基于模糊模型的非线性预测控制算法对PEMFC系统进行建模与控制。在建模与控制过程中,采用模糊聚类和线性辨识方法在线建立PEMFC控制系统的T-S模糊预测模型,然后基于分支定界法的基本原理对控制量进行离散寻优,从而实现PEMFC的非线性预测控制。仿真和实验结果证明了该算法的有效性和优越性。  相似文献   

12.
基于多模糊模型的非线性预测控制   总被引:1,自引:0,他引:1  
研究了基于多模糊模型的非线性预测控制问题 ,提出了基于多模型融合的非线性预测控制方法 .首先根据实际对象在不同运行点附近的状态建立了非线性系统的线性多模糊模型表示 ,然后给出了基于多模糊模型的预测控制原理结构框图 .非线性多模糊模型被用来作为预测模型 ,CSTR过程的仿真研究表明是一种有前景的非线性预测控制方法 .  相似文献   

13.
This paper looks at a new method of modelling nonlinear dynamic processes, using grid-type Takagi-Sugeno fuzzy models and a priori knowledge. The proposed hybrid fuzzy convolution dynamic model consists of a non-linear fuzzy steady-state static and a gainindependent impulse response model-based dynamic part. The modelling of nonlinear pH processes is chosen as a realistic case study for demonstration of the proposed modelling approach. The off-line identified hybrid fuzzy convolution model is shown to be capable of modelling the nonlinear process and providing better multiple-step prediction than the conventional grid-type Takagi-Sugeno fuzzy model.  相似文献   

14.
Effective optimization for fuzzy model predictive control   总被引:4,自引:0,他引:4  
This paper addresses the optimization in fuzzy model predictive control. When the prediction model is a nonlinear fuzzy model, nonconvex, time-consuming optimization is necessary, with no guarantee of finding an optimal solution. A possible way around this problem is to linearize the fuzzy model at the current operating point and use linear predictive control (i.e., quadratic programming). For long-range predictive control, however, the influence of the linearization error may significantly deteriorate the performance. In our approach, this is remedied by linearizing the fuzzy model along the predicted input and output trajectories. One can further improve the model prediction by iteratively applying the optimized control sequence to the fuzzy model and linearizing along the so obtained simulated trajectories. Four different methods for the construction of the optimization problem are proposed, making difference between the cases when a single linear model or a set of linear models are used. By choosing an appropriate method, the user can achieve a desired tradeoff between the control performance and the computational load. The proposed techniques have been tested and evaluated using two simulated industrial benchmarks: pH control in a continuous stirred tank reactor and a high-purity distillation column.  相似文献   

15.
Intelligent systems may be viewed as a framework for solving the problems of nonlinear system control. The intelligence of the system in the nonlinear or changing environment is used to recognize in which environment the system currently resides and to service it appropriately. This paper presents a general methodology of adaptive control based on multiple models in fuzzy form to deal with plants with unknown parameters which depend on known plant variables. We introduce a novel model‐reference fuzzy adaptive control system which is based on the fuzzy basis function expansion. The generality of the proposed algorithm is substantiated by the Stone‐Weierstrass theorem which indicates that any continuous function can be approximated by fuzzy basis function expansion. In the sense of adaptive control this implies the adaptive law with fuzzified adaptive parameters which are obtained using Lyapunov stability criterion. The combination of adaptive control theory based on models obtained by fuzzy basis function expansion results in fuzzy direct model‐reference adaptive control which provides higher adaptation ability than basic adaptive‐control systems. The proposed control algorithm is the extension of direct model‐reference fuzzy adaptive‐control to nonlinear plants. The direct fuzzy adaptive controller directly adjusts the parameter of the fuzzy controller to achieve approximate asymptotic tracking of the model‐reference input. The main advantage of the proposed approach is simplicity together with high performance, and it has been shown that the closed‐loop system using the direct fuzzy adaptive controller is globally stable and the tracking error converges to the residual set which depends on fuzzification properties. The proposed approach can be implemented on a wide range of industrial processes. In the paper the foundation of the proposed algorithm are given and some simulation examples are shown and discussed. © 2002 Wiley Periodicals, Inc.  相似文献   

16.
林林  申东日  陈义俊 《计算机仿真》2004,21(12):149-151
针对传统的模型预测控制不能很好解决具有严重非线性、不确定性的对象或过程的控制问题,提出将模糊模型用于描述对象的非线性动态特性,通过将模糊模型的输出反馈作为模型输入,从而构成了模糊多步预测器。采用一种收敛精度高、速度快的具有最优保留特性遗传算法(EGA),依据模型预测输出在线滚动求解控制律的非线性预测控制算法。仿真结果表明该算法对一类非线性系统具有较快的响应速度和较强的抗干扰能力。  相似文献   

17.
针对传统的模型预测控制不能很好解决具有严重非线性、不确定性的对象或过程的控制问题。提出将模糊模型用于描述对象的非线性动态特性。通过将模糊模型的输出反馈回来作为模型输入,从而构成了模糊多步预测器,采用一种收敛精度高、速度快的具有最优保留特性遗传算法(EGA)依据模型预测输出在线滚动求解控制律的非线性预测控制算法。仿真结果表明该算法对一类非线性系统具有较快的响应速度和较强的抗干扰能力。  相似文献   

18.
This work deals with the problem of controlling the outlet temperature of a tubular heat exchanger system by means of flow pressure. The usual industrial case is to try to control the outlet temperature by either the temperature or the flow of the fluid, which flows through the shell tube. But, in some situations, this is not possible, due to the fact that the whole of system coefficients variation cannot quite be covered by control action. In this case, the system behavior must precisely be modeled and appropriate control action needs to be obtained based on novel techniques. A new multiple models control strategy using the well-known linear generalized predictive control (LGPC) scheme has been proposed, in this paper. The main idea of the proposed control strategy is to represent the operating environments of the system, which have a wide range of variation with respect to time by multiple explicit linear models. In this strategy, the best model of the system is accurately identified, at each instant of time, by an intelligent decision mechanism (IDM), which is organized based on both new recursive weight generator and fuzzy adaptive Kalman filter approaches. After that, the adaptive algorithm is implemented on the chosen model. Finally, for having a good tracking performance, the generalized predictive control is instantly updated and its control action is also applied to the system. For demonstrating the effectiveness of the proposed approach, simulations are all done and the results are also compared with those obtained using a nonlinear GPC (NLGPC) approach that is realized based on the Wiener model of the system. The results can verify the validity of the proposed control scheme.  相似文献   

19.
This paper develops an efficient offset-free output feedback predictive control approach to nonlinear processes based on their approximate fuzzy models as well as an integrating disturbance model. The estimated disturbance signals account for all the plant-model mismatch and unmodeled plant disturbances. An augmented piecewise observer, constructed by solving some linear matrix inequalities, is used to estimate the system states and the lumped disturbances. Based on the reference from an online constrained target generator, the fuzzy model predictive control law can be easily obtained by solving a convex semi-definite programming optimization problem subject to several linear matrix inequalities. The resulting closed-loop system is guaranteed to be input-to-state stable even in the presence of observer estimation error. The zero offset output tracking property of the proposed control approach is proved, and subsequently demonstrated by the simulation results on a strongly nonlinear benchmark plant.  相似文献   

20.
Model predictive control is an available method for controlling large-lag process in power plants, but conventional constrained predictive control cannot deal with the widely existent uncertainties and nonlinearities in power plants. With the help of the fuzzy set theory, this article proposes a new constrained predictive control algorithm based on Fuzzy Decision-Making Method (FDMPC). Compared with the other traditional constrained predictive control, this new algorithm replaces the conventional objective function with the appropriate fuzzy index function. As a result, it is easy to integrate the constraints into the fuzzy index function, which can greatly reduce the complexity of the optimization. Then a new evolutionary computation method named particle swarm optimization is firstly applied into the design of a model predictive controller. Moreover, this article also demonstrates that the conventional predictive control is actually a particular case of the proposed algorithm even though in the MIMO case, so this new algorithm is an extension of the traditional constrained predictive control strategy. At last, the proposed FDMPC has been applied into a real once-through power unit model, and the simulation results have validated the good control performance of the proposed FDMPC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号