首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enhanced pyroelectric response is achieved via domain engineering from [001] grain-oriented, tetragonal-phase, lead-free 0.2(2/3K0.5Bi0.5TiO3-1/3BaTiO3)-0.8Na0.5Bi0.5TiO3 (KBT-BT-NBT) ceramics prepared by a templated grain growth method. The [001] crystallographic orientation leads to large polarization in tetragonal symmetry; therefore, texturing along this direction is employed to enhance the pyroelectricity. X-ray diffraction analysis revealed a Lotgering factor (degree of texturing) of 93 % along the [001] crystallographic direction. The textured KBT-BT-NBT lead-free ceramics showed comparable pyroelectric figures of merit to those of lead-based ferroelectric materials at room temperature (RT). In addition to the enhanced pyroelectric response at RT, an enormous enhancement in the pyroelectric response (from 1750 to 90,900 μC m?2 K?1) was achieved at the depolarization temperature because of the sharp ferroelectric to antiferroelectric phase transition owing to coherent 180° domain switching. These results will motivate the development of a wide range of lead-free pyroelectric devices, such as thermal sensors and infra-red detectors.  相似文献   

2.
《Ceramics International》2017,43(7):5505-5508
The effects of secondary phases on ferroelectric properties of Bi0.5Na0.5TiO3 (BNT) have been studied. Ceramic powders were prepared by solid state reaction employing different sintering temperatures and characterized by X-ray diffraction (XRD), Scanning Electron Microscopy and impedance spectroscopy. The perovskite structure was detected by XRD; together with small peaks corresponding to a secondary phase assigned to the Na2Ti6O13-based phase in calcined powders. In addition, morphology and the content of the secondary phase were modified by the sintering temperatures, affecting the ferroelectric properties, and ac and dc conductivities. We believe that our results can benefit not only the understanding of BNT ceramics, but also expand the range of applications.  相似文献   

3.
《Ceramics International》2016,42(3):4274-4284
Bi0.5(Na0.65K0.35)0.5TiO3 (BNKT) and Mn-modified Bi0.5(Na0.65K0.35)0.5(MnxTi1−x)O3 (BNKMT-103x), (x=0.0–0.5%) ferroelectric ceramics were synthesized by solid-state reaction method. Optimization of calcination temperature in Mn-doped ceramics was carried out for the removal of secondary phases observed in XRD analysis. BNKMT ceramics sintered at 1090 °C showed enhanced dielectric, piezoelectric and ferroelectric properties in comparison to pure BNKT. The average grain size was found to increase from 0.35 μm in BNKT to 0.52 μm in Bi0.5(Na0.65K0.35)0.5(Mn0.0025Ti0.9975)O3 (BNKMT-2.5) ceramics. The dielectric permittivity maximum temperature (Tm) was increased to a maximum of 345 °C with Mn-modification. AC conductivity analysis was performed as a function of temperature and frequency to investigate the conduction behavior and determine activation energies. Significant high value of piezoelectric charge coefficient (d33=176 pC/N) was achieved in BNKMT 2.5 ceramics. Improved temperature stability of ferroelectric behavior was observed in the temperature dependent P–E hysteresis loops as a result of Mn-incorporation. The fatigue free nature along with enhanced dielectric and ferroelectric properties make BNKMT-2.5 ceramic a promising candidate for replacing lead based ceramics in device applications.  相似文献   

4.
In the search for lead-free piezoelectric ceramics, such as potassium sodium niobate, (K0.5Na0.5)NbO3 (KNN), and bismuth sodium titanate (Bi0.5Na0.5)TiO3 (BNT), high sintering temperatures and the associated volatilization of cations represent a major obstacle to achieve well performing materials. In this study, we investigated the effect of cobalt on the sintering behavior of BNT using in situ thermo-optical dilatometry. The addition of cobalt significantly reduced the sintering temperature at which fully dense ceramic bodies are obtained. This is accomplished by a dual effect of the dopant which facilitates oxygen diffusion: a fraction of the available Ti forms a secondary cobaltous phase. Instead of Ti, some Co is incorporated into BNT at the Ti site, causing oxygen vacancies for charge balancing. To a small degree, the dopant induces liquid phase sintering. At high sintering temperatures, swelling was observed, which was attributed to oxygen release caused by the valence transition from Co3+ to Co2+.  相似文献   

5.
《Ceramics International》2016,42(3):4313-4322
(Bi0.5Na0.5)0.94Ba0.06(Ti1−xTax)O3 (x=0.00–0.04) lead-free polycrystalline ceramics were synthesized using the solid state reaction route, and their crystal structures and electrical properties were systematically studied. With the introduction of Ta substitution, the relaxor antiferroelectric phase with tetragonal P4bm symmetry is stabilized. The representative double polarization hysteresis loops and sprout shaped strain curves for antiferroelectric ceramics are observed at higher Ta contents with x=0.01–0.02 at room temperature. x=0.01 shows the largest strain of 3.81‰ under 60 kV/cm, indicating a good candidate for actuator applications. The polarization and strain hysteresis loops are also evaluated to verify the temperature-induced normal ferroelectric phase to relaxor antiferroelectric phase transition at temperature up to 120 °C. The energy storage density and efficiency at various temperatures are calculated and analyzed in the compositions of x=0.00–0.02. The results indicate that the energy storage density becomes more temperature independent with the increase of Ta concentration, which are promising for applications in high-temperature capacitors.  相似文献   

6.
《Ceramics International》2022,48(9):12601-12607
To explore new lead-free piezoelectric materials that is both environmentally friendly and healthy to provide the possibility for material selection for microelectromechanical systems. Lead-free piezoelectric (1-x)(0.8Bi0.5Na0.5TiO3-0.2Bi0.5K0.5TiO3)-xBi(Ni0.5Zr0.5)O3 thin films (abbreviated as BNT-BKT-xBNZ) (x=0.00, 0.01, 0.02, 0.03, 0.04) were prepared on Pt(111)/Ti/SiO2/Si substrates by a sol-gel method. Impacts of Bi(Ni0.5Zr0.5)O3 content on the microstructure, dielectric, ferroelectric, and piezoelectric properties were also investigated detailedly. It found that the Bi(Ni0.5Zr0.5)O3 composition had a great influence on the increase of relaxor and the decrease of the oxygen vacancies, which is influential to the promotion of thin-film properties. Thin-film of BNT-BKT-0.02BNZ showed the optimum electrical properties with the polarization of 40.27 μC/cm2, dielectric constants of 477 and effective inverse piezoelectric coefficient reach up to 125.9 p.m./V. Results revealed that the BNT-BKT thin films with 0.02 mol% Bi(Ni0.5Zr0.5)O3-doped are a kind of lead-free piezoelectric materials with superior manifestations with a great development prospect for applications.  相似文献   

7.
《Ceramics International》2016,42(15):16798-16803
Na0.5Bi0.5TiO3 (NBT) based oxide-ion conductor ceramics have great potential applications in intermediate-temperature solid oxide fuel cells (SOFCs) and oxygen sensors. Na0.5Bi0.49Ti1−xMgxO3−δ ceramics with x=0, 0.01, 0.02, 0.03, 0.05 and 0.08 were prepared by conventional solid-state reaction. XRD measurement and SEM analysis revealed the formation of pure perovskite structures without secondary phase. MgO doping greatly decreased the sintering temperature and inhibited grain growth. AC impedance spectroscopy measurement was adopted to measure the total conductivity, which was found to increase with MgO doping content ranging from 0 to 3 mol% and subsequently to decrease. High oxygen ionic conductivity σt=0.00629 S/cm was achieved for sample doped with 3 mol% MgO at 600 °C in air atmosphere.  相似文献   

8.
SnO2 doped Sr0.6(Na0.5Bi0.5)0.4TiO3 (NBT-ST) ceramics were prepared by a conventional solid-state reaction method. Their phase structures, microstructures and electrical properties were characterized in details. It is found that SnO2 doping could increase the lattice parameters, density and average grain size. A suitable amount of SnO2 can improve dielectric properties, and affect the relaxor behavior of the NBT-ST matrix, thereby it can effectively reduce the energy loss and optimize the energy storage performance. Furthermore, the energy storage properties are improved with SnO2 doping. Especially, the 1 at. % SnO2 doped NBT-ST achieves a high recoverable energy density of 2.35 J/cm3, which is mainly attributed to large maximum polarization of 43.2 μC/cm2, small remnant polarization of 5.83 μC/cm2 and high breakdown strength of 180 kV/cm. Also, relatively good temperature stability for dielectric performance and excellent fatigue resistance are observed in this composition. These properties are attractive for lead-free energy storage applications.  相似文献   

9.
《Ceramics International》2023,49(19):31152-31162
There is still a problem of low energy storage density in dielectric capacitors which is a core component of power systems. For the improvement of the energy storage density, the linear dielectric material CaTiO3 (CT) was introduced in Na0.5Bi0.5TiO3 (NBT) ceramics in this paper. By modifying the A site, a new relaxor ferroelectric ceramic was successfully synthesized and attained a recoverable density (Wrec) of 2.34 J/cm3 at x = 0.18. Moreover, the preparation process was optimized in this paper. Through the viscous polymer process (VPP) route, the energy density (WA) of 82NBT-18CTVPP ceramic further reaches 6.45 J/cm3 at 340 kV/cm, with efficiency (η) up to 75% and a Wrec of 4.82 J/cm3. At the same time, the change of Wrec is small at temperature (30–150 °C) and frequency (1 Hz–300 Hz), which demonstrates its excellent stability. The discharge power density reaches about 180 MW/cm3 and the discharge time is 0.117 μs, which indicates its excellent pulse discharge performance. The results show that 82NBT-18CT lead-free relaxation ferroelectric material is expected to become ideal for high-energy storage applications.  相似文献   

10.
In this work, the (1-x)(0.8Na0.5Bi0.5TiO3-0.2K0.5Bi0.5TiO3)-xSrTiO3 (NKBT-xST) incipient piezoelectric ceramics with x = 0–0.07 (0ST-7ST) were prepared by the solid-state reaction method and their structural transformation and electromechanical properties were investigated as a function of ST content. As the ST content increases, the long-range ferroelectric order is disrupted, and the ferroelectric-relaxor phase transition temperature (TFR) shifts to around room temperature for NKBT-5ST ceramics, accompanied by a relatively high electrostrain of 0.3% at 6 kV/mm. The large strain response associated with the vanished ferroelectric properties around TFR can be attributed to the reversible relaxor-ferroelectric phase transition. The electric-field-temperature (E-T) phase diagrams were established, and the transition between the two field-induced long-range ferroelectric states were found to take place via a two-step switching process through an intermediate relaxor state. The threshold electric field to trigger the conversion between ferroelectric state and relaxor state depends strongly on the dynamics of polarization relaxation, which is influenced by temperature and composition.  相似文献   

11.
Lead-free piezoelectric ceramics, (1?x)Na0.5Bi0.5TiO3-xKNbO3 (NBT-xKN), with x?=?0.02–0.08 were fabricated by solid-state reaction and sintering. The crystal structures and dielectric properties were measured for different KN contents. All compositions in the unpoled, as-sintered state were found to be single-phase pseudo-cubic. However, typical ferroelectric behaviour, with well-saturated polarisation-electric field hysteresis loops, was observed for certain compositions at high electric field levels. It is shown using high-energy synchrotron X-ray diffraction that the application of the electric field induced an irreversible structural transformation from the nano-polar pseudo-cubic phase to a ferroelectric rhombohedral phase. The changes in lattice elastic strain and crystallographic texture of a poled NBT-0.02KN specimen as a function of the grain orientation, ψ, conform well to those expected for a conventional rhombohedrally distorted perovskite ferroelectric ceramic. The dielectric permittivity-temperature relationships for all compositions exhibit two transition temperatures and a frequency-dependent behaviour that is typical of a relaxor ferroelectric. The transition temperatures and grain size decrease with the increasing KN content.  相似文献   

12.
《Ceramics International》2020,46(3):2798-2804
To further improve the properties of KNN-based lead-free ceramics, a new ceramic system, (0.98-x)K0.525Na0.475Nb0.965Sb0.035O3-0.02 BaZr0.5Hf0.5O3-x(Bi0.5Na0.5)ZrO3(KNNS-BZH-xBNZ) was designed, the relevant properties such as piezoelectricity, strain, and temperature stability were analysed in detail. It was found that the R-T phase boundary can be successfully constructed when x=0.030, and this two-phase coexistence shows relatively good comprehensive properties (d33~410 pC/N, TC~255 °C, Suni~0.132%, and d33*~441 pm/V). Meanwhile, its strain property also shows good temperature stability from room temperature to 180 °C (Suni100°C/SuniRT~97.5% and Suni180°C/SuniRT~83.9%), which is comparatively superior to many KNN-based ceramics and some lead-based ceramics. Therefore, KNNS-BZH-xBNZ ceramics may broaden the practical application of lead-free ceramics.  相似文献   

13.
《Ceramics International》2022,48(5):6062-6068
As microelectronic devices move toward integration and miniaturization, the thin film capacitors with high energy density and charge/discharge efficiency have attracted immense interests in modern electrical energy storage systems. Despite morphotropic phase boundary (Na0.8K0.2)0.5Bi0.5TiO3-based lead-free materials with outstanding ferroelectric and piezoelectric properties, while large ferroelectric hysteresis with high remanent polarization (Pr) hinder to improve energy storage capability. Here, novel lead-free relaxor-ferroelectric (RFE) thin film capacitors with high energy density are successfully prepared in (1-x) (Na0.8K0.2)0.5Bi0.5TiO3-xBa0.3Sr0.7TiO3 [(1-x)NKBT-xBST] systems. Introducing BST into the NKBT systems is expected to reduce remanent polarization (Pr) on account of coupling reestablishment of the polar nano-regions (PNRs) and improving the relaxation behavior. As a result, 0.6NKBT-0.4BST thin film exhibits high energy density (Wrec ~ 54.79 J/cm3) together with satisfactory efficiency (η ~ 76.42%) at 3846 kV/cm. The stable energy storage performances are achieved within the scope of operating temperatures (20–200 °C) and fatigue cycles (1-107 cycles). This work furnishes a new technological way for the design of high energy-density thin film capacitors.  相似文献   

14.
(Bi0.5Na0.5)TiO3 based ferroelectric lead-free thin films have great potential for modern micro-devices. However, the multicomponent feature and volatile nature of Bi/Na makes the achievement of high quality films challenging. In this work, the morphotropic phase boundary composition, 0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3 thin films were successfully prepared by CSD method. Dense films with low dielectric loss and low leakage current density were obtained. A well-defined polarization hysteresis loop with a high remnant polarization was observed in the thin films. Moreover, the polarization behavior of the film at original state, under electric field and upon heating was investigated by PFM. A self-polarization and asymmetric domain switching behavior were observed. High temperature induced depolarization and the self-polarization recovered upon cooling. The thin films with good quality show a promising potential for the application in electrical devices, and the in-depth investigation of the polarization behavior improves the understanding of ferroelectric and piezoelectric properties of thin films.  相似文献   

15.
Lead-free piezoelectric (1 ? x)Bi0.5(Na0.78K0.22)0.5TiO3xK0.5Na0.5NbO3 (BNKT–xKNN, x = 0–0.10) ceramics were synthesized using a conventional, solid-state reaction method. The effect of KNN addition on BNKT ceramics was investigated through X-ray diffraction (XRD), dielectric, ferroelectric and electric field-induced strain characterizations. XRD revealed a pure perovskite phase with tetragonal symmetry in the studied composition range. As the KNN content increased, the depolarization temperature (Td) as well as maximum dielectric constant (?m) decreased. The addition of KNN destabilized the ferroelectric order of BNKT ceramics exhibiting a pinched-type hysteresis loop with low remnant polarization (11 μC/cm2) and small piezoelectric constant (27 pC/N) at 3 mol% KNN. As a result, at x = 0.03 a significant enhancement of 0.22% was observed in the electric field-induced strain, which corresponds to a normalized strain (Smax/Emax) of ~434 pm/V. This enhancement is attributed to the coexistence of ferroelectric and non-polar phases at room temperature.  相似文献   

16.
Textured (Na,K)0.5Bi0.5TiO3 ceramics were fabricated by reactive-templated grain growth in combination with tape casting. The effects of sintering conditions on the grain orientation and the piezoelectric properties of the textured (Na,K)0.5Bi0.5TiO3 ceramics were investigated. The results show that the textured ceramics have microstructure with plated-like grains aligning in the direction parallel to the casting plane. The ceramics exhibit {h 0 0} preferred orientation and the degree of orientation is larger than 0.7. The degree of grain orientation increases with the increasing sintering temperature. The textured ceramics show anisotropy dielectric and piezoelectric properties in the directions of parallel and perpendicular to the casting plane. The ceramics in the perpendicular direction exhibit better dielectric and piezoelectric properties than those of the nontextured ceramics with the same composition. The optimized sintering temperature is 1150 °C where the maximum d33 of 134 pC/N parallel to casting plane, the maximum k31 of 0.31, and the maximum Qm of 154 in perpendicular direction were obtained.  相似文献   

17.
The development of capacitors with high reliability and good comprehensive performances is of great significance for practical applications. In this work, lead-free relaxor ferroelectric (FE) ceramics of (1-x)(0.5(Bi0.5Na0.5)TiO3-0.5SrTiO3)-xBi(Mg2/3Nb1/3)O3 ((1-x)(BNT-ST)-xBMN) were prepared by a conventional solid-state reaction method. The introduction of BMN was found to enhance local structure disorder, leading to the significantly reduced size of FE nanodomains, which is responsible for the slim polarization-electric field hysteresis loops. A giant energy-storage density of 6.62 J/cm3 and a high efficiency of 82 % can be achieved simultaneously under a moderate electric field of 34 kV/mm at x = 0.08. It also exhibits high discharge density ~ 2.74 J/cm3, large power density ~ 248 MW/cm3 and ultrafast discharge rate ~ 28 ns at 20 kV/mm in addition to excellent temperature (10–130 °C) and frequency (1–100 Hz) stabilities. These results demonstrate that the (1-x)(BNT-ST)-xBMN ceramic system is a promising lead-free candidate for advanced pulsed power capacitor applications.  相似文献   

18.
(1-x)[0.8Bi0.5Na0.5TiO3-0.2Bi0.5K0.5TiO3]-xBi(Mn0.5Ti0.5)O3 (x = 0–0.06, BNKMT100x) lead-free ferroelectric ceramics were prepared via solid state reaction method. Bi(Mn0.5Ti0.5)O3 induces a structure transition from rhombohedral-tetragonal morphotropic phases to pseudo-cubic phase. Moreover, the wide range of compositions within x = 0.03–0.055 exhibit large strain of 0.31%–0.41% and electrostrictive coefficient of 0.027–0.041 m4/C2. Especially, at x = 0.04, the large strain and electrostrictive coefficient are nearly temperature-independent in the range of 25–100 °C. The impedance analysis shows the large strain and electrostrictive coefficient originate from polar nanoregions response due to the addition of Bi(Mn0.5Ti0.5)O3.  相似文献   

19.
BiAlO3-doped Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3 (BA-doped BNT-BKT) ceramics are greatly concerned due to their sufficient electric-field-induced strain with small hysteresis and remnant strain for high precision positioning devices and other actuators. In this paper, the structural analysis especially the high-resolution transmission electron microscope (HRTEM) is used to reveal the origin of excellent properties obtained in 0.96(0.75BNT-0.25BKT)-0.04BA, which exhibits a large strain of 0.21% at ~70 kV/cm, a small strain hysteresis of only 24% and a near-zero remnant strain. Using HRTEM, the antiferroelectric nano-domains composited by three variants of in-phase a0a0c+ octahedral tilting coexisted with the remnant ferroelectric nano-domains of anti-phase a?a?a? octahedral tilting are directly identified. Then a continuous tilting model is proposed to interpret the gradually transitional tilting involving nano-domains leading to the small hysteresis and near-zero remnant strain. The findings may pave a way for further optimizing the properties through creating stable antiferroelectric nano-domains in BNT-based ceramics and the analogues.  相似文献   

20.
BiAlO3-doped Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3 (BA-doped BNT-BKT) ceramics are greatly concerned due to their sufficient electric-field-induced strain with small hysteresis and remnant strain for high precision positioning devices and other actuators. In this paper, the structural analysis especially the high-resolution transmission electron microscope (HRTEM) is used to reveal the origin of excellent properties obtained in 0.96(0.75BNT-0.25BKT)-0.04BA, which exhibits a large strain of 0.21% at ∼70 kV/cm, a small strain hysteresis of only 24% and a near-zero remnant strain. Using HRTEM, the antiferroelectric nano-domains composited by three variants of in-phase a0a0c+ octahedral tilting coexisted with the remnant ferroelectric nano-domains of anti-phase aaa octahedral tilting are directly identified. Then a continuous tilting model is proposed to interpret the gradually transitional tilting involving nano-domains leading to the small hysteresis and near-zero remnant strain. The findings may pave a way for further optimizing the properties through creating stable antiferroelectric nano-domains in BNT-based ceramics and the analogues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号