首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To explore lead-reduced dielectric materials in the SrTiO3–PbTiO3–PbZrO3 ternary system, a novel solid solution between relaxor ferroelectric (Pb0.5Sr0.5)(Zr0.5Ti0.5)O3 and ferroelectric PbTiO3, namely (1 − x)(Pb0.5Sr0.5) (Zr0.5Ti0.5)O3xPbTiO3 (lead–strontium–zirconate–titanate [PSZT]–PT), has been synthesized in the perovskite structure by high-temperature solid-state reaction method in the form of ceramics. The crystal structure and phase symmetry of the materials synthesized were analyzed and resolved based on X-ray powder diffraction (XRD) data through both the Pawley and Rietveld refinements. The results of the structural refinements indicate that at low PT-concentration end of the solid solution system, for example, x = 0.05, the PSZT–PT solid solution exhibits a cubic structural symmetry (with the space group Pm-3m). As the PT concentration (x) increases, the structure of (1 − x)PSZT–xPT gradually transforms from the cubic to a tetragonal (P4mm) phase. In the composition range of x = 0.10–0.25, a mixture of the cubic and tetragonal phases was identified. As the concentration of PT increases, the proportion of the tetragonal phase increases at the expense of the cubic phase. For a composition of x > 0.25, a pure tetragonal phase is observed. The dielectric properties of the materials were studied by measuring the permittivity as a function of temperature at various frequencies. For the composition of x = 0.05, the temperature dependence of dielectric constant shows typical relaxor behavior. For x = 0.35, the dielectric peaks indicate a normal ferroelectric phase transition. Overall, a structural transformation from a central-symmetric, nonpolar cubic phase to a non-centrosymmetric, polar tetragonal phase is induced by the substitution of PT for PSZT in the pseudo-binary solid solution of (1 − x)PSZT–xPT, which also reveals an interesting relaxor to ferroelectric crossover phenomenon.  相似文献   

2.
3.
Magnetoelectric multiferroics are very promising materials because of their practical applications and fundamental interests. The most widely studied magnetoelectric oxides are ABO3 perovskites. In the paper structural properties of BiFeO3 and Pb(Fe0.5Nb0.5)O3 solid solution are described. The material crystallizes in rhombohedral R3c crystal structure which parameters are presented. Mössbauer spectroscopy was used to study local changes in an iron environment due to Fe/Nb substitution and hyperfine interaction parameters of different local surroundings of iron atoms are presented. The random distribution of B-site sublattice cations was confirmed. Ab initio calculations of the studied solid solution were conducted and theoretical crystal structure parameters were compared with the experimental data. The theoretical magnetic and electric properties are discussed. The local iron magnetic moments were estimated and their dependence on the local surrounding changes is shown. The calculated electrons densities and Bader's topological analysis were used to describe chemical bonding properties.  相似文献   

4.
0.92Na0.5Bi0.5TiO3–0.06BaTiO3–0.02K0.5Na0.5NbO3+x wt% Co2O3 (NBKT–xCo, x=0, 0.2, 0.4, 0.6, 0.8) lead-free ferroelectric ceramics were prepared via a conventional solid state reaction method. Effects of Co2O3 additive on crystallite structure, microstructure, dielectric and ferroelectric properties of the NBKT–xCo ceramics were studied. X-ray diffraction results showed that the rhombohedral–tetragonal morphotropic phase boundary existed in all the ceramics, with relative amount of tetragonal phase varying with the content of Co2O3. Average grain size, maximum value of dielectric constant, Curie temperature and ferroelectric properties of the ceramics were close related to the content of Co2O3. The dielectric anomaly caused by the phase transition between the ferroelectric phase and the so-called “intermediate phase” was observed in the ceramics with x≤0.2, while it disappeared with further increasing x. All the ceramics showed a diffuse phase transition between the “intermediate phase” and the paraelectric phase. The change in the ferroelectric properties with changing the content of Co2O3 was discussed by considering the competitive effects among grain size, relative amount of the tetragonal phase and oxygen vacancies.  相似文献   

5.
Lead free Ba1?x(Bi0.5Na0.5)xTiO3 (x=0, 0.02, 0.04, 0.06, 0.08, 0.1) ferroelectric ceramics were synthesized by conventional solid state reaction technique. Sintering was done at 1200 °C for 2 h in air atmosphere. The final products have tetragonal symmetry with decreasing c/a ratio confirmed by X-ray diffraction analysis. The grain size varies between 300 nm to 1000 nm for x=0 to 0.1. With increase in Bi0.5Na0.5TiO3 [BNT] content, the room temperature permittivity decreases whereas the Curie temperature (Tc) increases and its highest value was found to be 155 °C for 10 mol% of BNT addition. The ceramics show stable and low dielectric loss characteristics. The remnant polarization (Pr) and the coercive field (Ec) increases monotonously with increase in BNT content. The highest value of 2Pr (=17 μC/cm2) and 2Ec (=22 Kv/cm) was obtained for x=10 mol% BNT addition.  相似文献   

6.
《Ceramics International》2017,43(3):3246-3251
The coexistence of ferroelectricity and ferromagnetism has triggered great interest in multiferroic materials. Multiferroic with strong room temperature magnetoelectric (ME) coupling can provide a platform for future technologies. In this paper, we have investigated the effect of mechanical milling on the properties of multiferroic nanocomposites synthesized by mixing barium titanate (BaTiO3) (BT) and nickel cobalt ferrite (Ni0.5Co0.5Fe2O4) (NCF). This process has resulted into reliable disposal of a given quantity of NCF nanoparticles in BT grid and composite samples of different particle sizes (<500 nm) have been obtained by varying the duration of ball-milling for 12, 24, and 48 h. The presence of NCF within BT powder has been confirmed by X-ray Diffraction (XRD) and magnetization measurements (MH). Structural analysis was performed by using Reitveld refinement method that shows that the tetragonality of BaTiO3 structure get reduced in submicron range. Variations in ferroelectric and dielectric properties with reduction in particle size/milling duration have been studied by P-E loop tracer and Impedance analyzer. The dielectric constant value of 400 has been observed for BT-NCF0 that increases to 9.7 K for composite sample ball mill at 48 h whereas remnant polarization increases to 4.2 μC/cm2. These composites with high dielectric constant that changes with temperature and particles size find application in energy storage devices, sensor and memory devices.  相似文献   

7.
《Ceramics International》2014,40(6):7947-7951
Lead free (1−x)(0.8Bi0.5Na0.5Ti0.5O3–0.2Bi0.5K0.5TiO3)–xBiZn0.5Ti0.5O3 (x=0–0.06) (BNT–BKT–BZT) thin films were deposited on Pt(111)/Ti/SiO2/Si(100) substrates by a sol–gel processing technique. The effects of BZT content on the structural, dielectric, ferroelectric and piezoelectric properties of the BNT–BKT–BZT thin films were investigated systematically. The BNT–BKT–BZT thin films undergo a transition from ferroelectric to relaxor phase with increasing temperature. The phase transition temperature decreases with the increase of BZT content. The BNT–BKT–BZT thin film with x=0.04 exhibits the best ferroelectric properties (Pmax=40 µC/cm2 and Pr=10 µC/cm2), largest dielectric constant (ε=560) and piezoelectric constant (d33=40 pm/V). This finding demonstrates that the BNT–BKT–BZT thin film has an excellent potential for demanding high piezoelectric properties in lead free films.  相似文献   

8.
《Ceramics International》2016,42(7):8402-8408
(Bi0.5Na0.5)0.925Ba0.075(Ti1−xMnx)O3 (x=0, 0.2, 1.0, and 2.0 mol%) ceramics were prepared by solid-state-reaction method to study dielectric, ferroelectric, and depolarization properties. The manganese (Mn) doping can suppress dielectric permittivity and increase relaxor behavior. Coercive field (Ec) increases, while remanent polarization (Pr) decreases as the Mn content increases. Pr exhibits discontinuous anomalies as a function of temperature in all compositions, implying a polarization reorganization of local domains. The depolarization temperature (Td) reaches the highest value (~152 °C) in 0.2%Mn, and decreases as MnO2 content increases. The increased Td in 0.2%Mn is due to two-phase coexistence and structural thermal stability induced by Mn ions. This work suggests that the moderate Mn doping can enhance Td in lead-free piezoceramics for applications at elevated temperatures.  相似文献   

9.
The main emphasis of this work is to create a new perovskite material with three different compositions (La0.75Sr0.25Mn0.5Cr0.5−xAlxO3, x = 0.1, 0.2, 0.3) applied in both Intermediate- and High-temperature Solid Oxide Fuel Cells (IT- and HT-SOFCs). Perovskite-type polycrystalline La0.75Sr0.25Mn0.5Cr0.5−xAlxO3−δ (x = 0.1, 0.2, 0.3) powders were synthesized and formed in a single phase structure by a dry chemistry route (standard solid-state reaction method). The effect of Al doping on physicochemical and surface properties has been discovered. The compounds were crystallized in single phase rhombohedral symmetry (R-3C Space. Group). Total conductivity of Al doping in wet 5% H2 was higher than both dry 5% H2 and air. The obtained results enhance the electro-catalytic performance and the material conductivity as well, which will be good for anode materials in IT- and HT-SOFCs and the optimum doping is 10%.  相似文献   

10.
11.
《Ceramics International》2017,43(10):7653-7659
Lead-free (1−x)(0.75Bi0.5Na0.5TiO3–0.25Bi0.5K0.5TiO3)–xBiAlO3 (BNT–BKT–100xBA, x=0–0.10) ceramics were prepared by two-step sintering method and their phase structure, micro morphology and electrical properties were systematically investigated. X-ray diffraction analysis indicates a pure perovskite phase for x≤0.06 as well as a structural evolution from a tetragonal toward a pseudocubic phase. Transmission electron microscopy study of the x=0.04 composition reveals the existence of antiferroelectric phase with a0a0c+ oxygen octahedron tilting which is in the form of nano-domains. Polarization-electric field and current-electric field hysteresis loops demonstrate that the increase of BA concentration destroys the ferroelectric order and strengthens antiferroelectric order. A much enhanced energy storage density of 1.15 J/cm3 and efficiency of 73.2% is achieved under 105 kV/cm at x=0.06. In addition, its energy storage property is found to depend weakly on temperature within the measurement range of 25–150 °C.  相似文献   

12.
《Ceramics International》2017,43(16):13612-13617
0.8Bi0.5Na0.5Ti(1-x)NbxO3−0.2Sr0.85Bi0.1TiO3 (BNT-SBT-xNb, x = 0.00, 0.01, 0.02, and 0.03) piezoelectric ceramics were prepared by traditional solid state reaction and the influence of Nb substitution on the phase structure, ferroelectric, piezoelectric, and electric-field-induced strain properties in BNT-SBT ceramics were studied. XRD results exhibited that Nb5+ ions could fully diffuse into BNT-SBT structure to form a solid solution when x = 0.01. P-E loops and S-E curves suggested that the ferroelectric phase transformed to ergodic relaxor state (FE-to-ER) with the increasing the amount of Nb additive, indicating the ferroelectric long-ranged order was disturbed by the excess of Nb. With increasing Nb doping, phase transition temperature from normal ferroelectric to ergodic relaxor (short for TF-R) could be reduced from 120 °C to 40 °C. Furthermore, for sample with x = 0.01, the normalized strain d33* got a maximum value ~571 pm/V due to the phase transition from ergodic relaxor to ferroelectric (ER-to-FE) under electric field.  相似文献   

13.
Coal particles (−0.5 mm) were flocculated with fine magnetite by polyacrylamide-based polymers. The magnetic flocs obtained were retained in a magnetic field and their stability studied under different flow rates of water. Flocs formed by coarser particles were more easily broken. It is postulated that this is due to breakage of polymer bridges between particles.  相似文献   

14.
In the present work, strontium calcium iron niobate ((Sr1?xCax)Fe0.5Nb0.5O3; SCFN) (x=0, 0.1, and 0.2) powders were synthesized for the first time using a molten salt technique. The pure phase perovskite obtained at a relative low calcination temperature of 800 °C was characterized using the X-ray diffraction technique (XRD). SCFN ceramics were fabricated and their properties were investigated. The XRD data of the SCFN ceramics was consistent with an orthorhombic symmetry. However, the solubility of Ca in the SCFN ceramics had an upper limit at x=0.1. All ceramics showed a large dielectric constants. The Ca doping inhibited grain growth, but produced an improvement in dielectric–temperature stability. Furthermore, the doping reduced loss tangent, especially for the x=0.1 sample. These results suggest that the SCFN ceramics prepared from molten salt synthesis exhibit a good dielectric performances, compared to many high dielectric materials that have been prepared using the conventional method.  相似文献   

15.
《Ceramics International》2015,41(8):9708-9714
The magnetization behavior of Ti4+ doped perovskite manganites La0.5Sr0.5Mn1−xTixO3 (x=0.15, 0.175 and 0.2) was investigated. Experimental results show that Ti4+ dopant suppresses the antiferromagnetic charge ordering and leads to a step-like magnetization behavior below 3 K. The step-like transitions and the critical magnetic fields are strongly dependent on the Ti doping level, magnetic field sweep rate and temperature. Above 3 K, the step-like transitions transform to broad ones. In addition, under pulsed high magnetic fields with an ultrafast field sweep rate of ~103 T/s, the sharp step-like transitions observed in the static magnetization measurements become smooth metamagnetic transition at low temperatures. This feature is correlated with the collapse of the balance between the magnetic energy and elastic energy in the phase separation system within a martensitic-like scenario.  相似文献   

16.
Lead-free bismuth sodium titanate zirconate (Bi0.5Na0.5Ti1?xZrxO3 or BNTZ) solid solutions with varied composition of x=0.50, 0.55, 0.58, 0.60, 0.63, 0.65, 0.68, 0.70, 0.73, 0.75 and 0.78 mol fraction were obtained using a conventional mixed-oxide method. XRD analysis indicated that the increase in concentration of Zr led to compositions across morphotropic phase boundary region. A quantitative structural investigation was carried out using the X-ray powder diffraction data. The rhombohedral phase was found to dominate for x<0.68 with space group R3c. In the morphotropic phase boundary (MPB) region i.e. 0.68≤x≤0.75, it was demonstrated that coexistence of rhombohedral and orthorhombic phase was observed. For x=0.78, the phase was completely orthorhombic with space group Pmna. Furthermore, the dielectric properties showed some enhanced activity of dipole movement at MPB boundaries which supported the presence of MPB region in this material system.  相似文献   

17.
Lead-free relaxor ferroelectric ceramics (1?x)(K0.5Bi0.5)TiO3xBi(Ni0.5Ti0.5)O3 were prepared by a conventional solid-state route, the phase transition behavior and corresponding electrical properties were investigated. A typical morphotropic phase boundary (MPB) between rhombohedral and tetragonal ferroelectric phases was identified to be in the range of 0.05<x<0.07 where the optimum piezoelectric and electromechanical properties of d33=126 pC/N and kP=18% were achieved. Most importantly, a high Curie temperature ~320 °C, around which the material shows a typical relaxor ferroelectric behavior characterized by the presence of diffuse phase transition and frequency dispersion, was obtained in MPB compositions, significantly higher than those of some existing MPB lead-free titanate systems. These results demonstrate a tremendous potential of the studied system for device applications.  相似文献   

18.
The correlation between physical–chemical properties and activities of LaB0.5Co0.5O3 (B = Cr, Mn, Cu) nano perovskites was studied in combustion of toluene. LaMn0.5Co0.5O3 showed the highest activity among LaB0.5Co0.5O3 catalysts and further optimization study was focused on LaMnxCo1?xO3 (x = 0.1, 0.25, 0.5). The activity and reducibility of catalysts improved due to partial substitution of Co3+ by B cation. No direct relationship was between surface area and catalyst activity. T50% of 2-propanol over LaMn0.25Co0.75O3, LaMn0.5Co0.5O3, LaMn0.1Co0.9O3 and LaCoO3 was 168, 200, 220 and 229 °C, respectively. LaMn0.25Co0.75O3 was the optimum catalyst and showed robust stability in combustion of toluene and 2-propanol.  相似文献   

19.
(1?x?y)Bi0.5Na0.5TiO3xBi0.5K0.5TiO3yBiFeO3 (BNKFT-x/y with 0.12≤x≤0.24, 0≤y≤0.07) lead-free piezoelectric ceramics have been prepared by the combustion technique. The effects of amounts of x and y on structures and electrical properties were examined. Powders and ceramics can be well calcined and sintered at 750 °C for 2 h and 1025–1050 °C, respectively. The results indicated that the crystalline structure and microstructure changed with the increase of x and y concentrations. XRD results of BNKFT-x/0.03 and BNKFT-0.18/y ceramics with 0.12≤x≤0.24 and 0≤y≤0.07 showed the rhombohedral–tetragonal morphotropic phase boundary (MPB). The addition of y caused a promoted grain growth while the addition of x suppressed the grain growth. The highest density (ρ=5.85 g/cm3), superior dielectric properties at Tc (εr=7846 and tan δ=0.02), remnant polarization measured at 40 kV/cm (Pr = 20.1 μC/cm2) and piezoelectric coefficient (d33=213 pC/N) were obtained for x=0.18 and y=0.03.  相似文献   

20.
Nanoparticles of Co0.5Zn0.5AlxFe2?xO4 (x = 0, 0.2, 0.4, 0.6, 0.8 and 1.0) were synthesized by sol–gel method and the influence of Al3+ doping on the properties of Co0.5Zn0.5Fe2O4 was studied. X-ray diffraction studies revealed the formation of single phase spinel type cubical structure having space group Fd-3m. A decreasing trend of the lattice parameter was observed with increasing Al3+ concentration due to the smaller ionic radii of Al3+ ion as compared to Fe3+ ion. TEM was used to characterize the microstructure of the samples and particle size determination, which exhibited the formation of spherical nanoparticles. The particle size was found to be increases up to ~45 nm after annealing the sample at 1000 °C. Electrical resistivity was found to increase with Al3+ doping, attributed to the decrease in the number of Fe2+–Fe3+ hopping. The activation energy decreased with increasing Al3+ ion concentration, indicating the blocking of conduction mechanism between Fe3+–Fe2+ ions. The value of saturation magnetization decreased, when Fe3+ ions were doped with Al3+ ions in Co0.5Zn0.5Fe2O4; however, the coercivity values increased with increasing Al3+ ion content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号