首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 418 毫秒
1.
采用水热法在阳极氧化的TiO_2纳米管阵列上修饰MnO_2,制备MnO_2/TiO_2复合物电极,并组装为对称超级电容器。利用FESEM、TEM、XPS和电化学工作站对样品的表面形貌、元素价态和电化学性能进行表征。结果表明:MnO_2以纳米颗粒形态均匀分布在TiO_2纳米管阵列管口和内部,充放电电流密度在1A/g下时,比电容为429.3F/g,经5 000次循环后的电容保持率为82.4%。MnO_2/TiO_2对称超级电容器在电流密度5A/g下充放电比电容为39.9F/g,经5 000次循环后的电容保持率为91.5%;功率密度400 W/kg下,能量密度为18.98 Wh/kg。阳极氧化的TiO_2纳米管阵列既可做MnO_2的载体,基底Ti又可做集流体,减轻了超级电容器的质量,为制备超级电容器提供了一种思路。  相似文献   

2.
以2-巯基吡啶(PySH)为氧化还原活性介质,以聚乙烯醇(PVA)为聚合物基体,采用溶液共混法制备了PVA-H2SO4-PySH凝胶电解质,研究了Py-SH添加量对凝胶电解质离子电导率的影响,并组装了活性炭电极超级电容器,利用循环伏安、恒流充放电、交流阻抗谱和自放电等测试对超级电容器电化学性能进行了表征。结果表明,PySH的引入提高了凝胶电解质的离子电导率,同时也改善了超级电容器的电化学性能,在相同电流密度下,超级电容器电极比电容由137F/g提高为394F/g,能量密度由3.6Wh/kg提高到12.4Wh/kg,经过3000次充放电循环后比电容保持率为89%。  相似文献   

3.
以2-巯基吡啶(PySH)为氧化还原活性介质,以聚乙烯醇(PVA)为聚合物基体,采用溶液共混法制备了PVA-H2SO4-PySH凝胶电解质,研究了PySH添加量对凝胶电解质离子电导率的影响,并组装了活性炭电极超级电容器,利用循环伏安、恒流充放电、交流阻抗谱和自放电等测试对超级电容器电化学性能进行了表征。结果表明,PySH的引入提高了凝胶电解质的离子电导率,同时也改善了超级电容器的电化学性能,在相同电流密度下,超级电容器电极比电容由137F/g提高为394F/g,能量密度由3.6Wh/kg提高到12.4Wh/kg,经过3000次充放电循环后比电容保持率为89%。  相似文献   

4.
以胡萝卜为炭源,采用KOH对胡萝卜炭进行活化,制备出具有高比电容的分级多孔炭材料。利用SEM、X射线衍射分析、低温氮气吸脱附等手段对制备的材料进行形貌及结构分析,结果表明,不同碱炭比会造成炭材料不同程度的结构变化,在碱炭比为2∶1时,所制备的炭材料孔隙结构分布最佳,比表面积高达3 111.45 m2/g,总孔容为1.51 m3/g。循环伏安(CV)、恒流充放电(GCD)等电化学测试表明,在最佳活化条件下制备的胡萝卜基多孔炭材料制成的电极在6 mol/L KOH电解液、0.5 A/g电流密度条件下比电容为486 F/g,表明材料具有良好的电容性能;当电流密度提升20倍时,电容量保留为原来的86%,表明材料具有良好的倍率性能;10 A/g电流密度下经8 000次循环后,电容保持率为97.3%,表明材料具有良好的稳定性。胡萝卜基多孔炭材料制成的电极片所组装的水系超级电容器器件能量密度可达14.67 Wh/kg,功率密度为1 000 W/kg。  相似文献   

5.
为获得具有优异电化学性能的超级电容器电极材料,首先依次对实验合成的聚吡咯(PPy)纳米管进行碳化处理和活化处理来制备层级多孔碳纳米管(PCNTs)。然后用一步溶剂热法将9,10-菲醌(PQ)分子通过π-π堆积作用进一步修饰到PCNTs表面得到PQ分子非共价修饰的PCNTs复合材料(PQ/PCNTs)。不仅对合成的复合材料进行了形貌表征,而且还通过循环伏安法(CV)、恒电流充放电(GCD)和电化学阻抗谱(EIS)研究了具有不同PQ分子负载率的复合材料(PQ/PCNTs)的超级电容性能。实验结果表明:PQ分子与PCNTs质量比为5∶5的复合材料的电化学性能最好,在1 A·g-1的电流密度下的比容量可以达到407.7 C·g-1。同时复合材料表现出优异的倍率性能(电流密度为50 A·g-1时的比容量为307.3 C·g-1)和循环稳定性能(在10 A·g-1电流密度下循环10,000次后电容保持率为91.4%)。为了进一步研究复合材料的实际应用性能,以PQ与PCNTs质量比为5∶5作...  相似文献   

6.
通过水热路径引入表面活性剂十二烷基磺酸钠在泡沫镍上成功合成出比表面积较大、超薄多孔的MgCo2O4纳米线。研究表明,MgCo2O4纳米线展示出紧密交织透明的网格状结构且在5 A/g的电流密度下,比电容高达2128 F/g。在40 A/g的情况下循环6000周次后,比电容保持了原始容量的98.4%。将该纳米线和活性炭分别作为正极和负极组装成非对称超级电容器,其比电容可达65.32 F/g且在功率密度为338.95 W/kg下能量密度可达20.41 Wh/kg。上述结果表明该非对称超级电容器是一个较好的储能装置,在实际应用中拥有良好的潜力。  相似文献   

7.
Co-Fe普鲁士蓝(CoPBA)是目前被广泛研究的超级电容器正极材料,其比电容高循环性能好,但低导电性和较差的倍率性能限制了其在超级电容器中的应用。为了提高CoPBA的导电性和电化学性能,本文以Co-glycerate为前驱体,采用牺牲模板法制备了Co-Fe普鲁士蓝/多壁碳纳米管(CoPBA/MWCNT)复合材料,利用XRD、SEM和FTIR等对复合材料的结构和形貌进行表征,使用电化学工作站在三电极体系和非对称超级电容器中测定了复合材料的电化学性能。实验结果表明:采用牺牲模板法成功合成出形貌较好的球状复合材料,以中性溶液Na2SO4为电解液,测得在1 A/g的电流密度下复合材料的质量比电容达到391.5 F/g。在10 A/g的高电流密度下比电容达到312.6 F/g,为1 A/g时的79.8%。利用软件模拟得出电荷转移电阻由3.9Ω降低到1.1Ω。以CoPBA/MWCNT为正极,以活性炭为负极制成非对称电容器,在功率密度为1 092 W/kg时能量密度可达39.5 Wh/kg, 5 000次循环后容量保持率为85.2%。采用牺牲模板法制备的...  相似文献   

8.
本研究通过增加隔膜层数来增加正负极的间距以提高锌离子混合超级电容器(ZIC)的循环寿命,并计算出相应的枝晶生长速率。结果表明,四层隔膜的ZIC在1 A·g-1的电流密度下,循环寿命可达20 000圈,充放电时长达170 h,是单层隔膜的200倍。正负极间距会导致ZIC的比容量变化。当电流密度为0.1 A·g-1时,单层隔膜,双层隔膜,三层隔膜,四层隔膜的比电容分别为262,230,218和207 F·g-1。当电流密度为10 A·g-1时,不同层数隔膜的比电容分别为90,75,68和42 F·g-1。由于正负极间距的增加,延缓了锌枝晶生长刺穿隔膜的时间,从而大大提高了ZIC的循环寿命。  相似文献   

9.
传统的NiCo2S4硫化过程需要高温加热, 耗能较大, 并且单纯的硫化物导电性差。本工作通过绿色环保的室温硫化法成功制备出以活性炭纤维(ACF)为核, NiCo2S4为壳的复合异质结电极材料(NiCo2S4@ACF)。NiCo2S4@ACF复合电极材料的层状结构, 有效增大了与电解液的接触面积, 改善了电子的传输路径, 使其具有更优良的电化学性能。当电流密度为1 A/g时, 其比电容值高达1541.6 F/g (678 μF/cm2)。另外, NiCo2S4@ACF和ACF分别作正负极组装成的非对称超级电容器(Asymmetric Supercapacitors, ASC)展现了良好的电化学性能: 能量密度高, 当功率密度为800 W/kg时, 能量密度高达49.38 Wh/kg; 循环性能稳定, 循环充放电2000圈后比电容仍能保持90.27%。研究表明, NiCo2S4@ACF复合电极材料是一种应用前景广阔的超级电容器电极材料。  相似文献   

10.
丝瓜络具有立体管束状结构,在制备生物质基三维(3D)多孔炭材料方面具有独特优势。以丝瓜络为原料,聚磷酸铵为活化剂、形貌保护剂和氮掺杂源,确立了制备丝瓜络基3D多孔炭材料的优化工艺条件。实验结果表明,经过预炭化处理所制得的样品CAC-1-550,比表面积为738 m2/g,总孔容为0.43 cm3/g,较一步炭化活化法所制样品AC-1-550均有明显提高。电化学测试结果表明,在电流密度为0.5 A/g时,CAC-1-550的比电容可达260 F/g,且经6 000次的循环充放电后,电容保持率为116%,循环稳定性能优良。在功率密度为1 674 W/kg时,最高能量密度为37.2 Wh/kg,优于绝大多数文献中所报道的超级电容器炭电极材料。当功率密度大幅增加到33.5 kW/kg时,能量密度仍达9.3 Wh/kg,CAC-1-550展现出良好的电化学性能,并显示出作为超级电容器的电极材料具有很大的应用潜力。  相似文献   

11.
可穿戴设备的快速发展刺激了对柔性高面容量储能设备的迫切需求。本工作采用一种简单的无粘结剂阴极电沉积方法将纳米片状RuOx·nH2O沉积固定在三维石墨烯骨架上, 以提高RuOx·nH2O的利用效率, 实现了更优良的电极导电性, 并缩短了质子和电子的扩散传输路径。在2 mV?s -1时, 它的面容量高达3.78 F?cm -2, 主要归因于材料的纳米层状结构有利于电解质进入活性物质RuOx·nH2O的内部。另外, 以这种电极材料制备得到的全固态柔性超级电容器, 在10 mA?cm -2的电流密度下, 能量密度达到0.1 mWh?cm -2, 功率密度达到2.4 mW?cm -2, 超过大部分文献报道。  相似文献   

12.
采用水热法合成高质量的Fe4[Fe(CN)6]3(HQ-FeHCF)纳米材料, 并对材料进行X射线衍射(XRD), 扫描电子显微镜(SEM), 透射电子显微镜(TEM)和热重分析测试(TGA)等表征。结果表明:Fe4[Fe(CN)6]3呈规则立方体, 颗粒大小约500 nm, 属面心立方结构。Fe4[Fe(CN)6]3在NaClO4-H2O-聚乙二醇电解液中1C、2C、5C、10C、20C、30C和40C的容量分别为124、118、105、94、83、74和64 mAh·g -1, 表现出优异的倍率性能; 以5C倍率循环500次, 容量保持率接近100%, 表现出极佳的循环稳定性。以Fe4[Fe(CN)6]3和磷酸钛钠分别为正负极的全电池工作电压高达1.9 V, 能量密度可达126 Wh·kg -1; 以5C倍率恒流充放电测试140次后全电池容量保持率为92%, 且库伦效率始终接近100%。  相似文献   

13.
先以高锰酸钾(KMnO4)和硫酸锰(MnSO4·H2O)为原料用电脉冲辅助氧化还原法制备二氧化锰(MnO2)粉末,再以葡萄糖(C6H12O6)为碳源用液相烧结法制备出不同碳包覆量的MnO2/C复合材料,研究了碳包覆量对材料的形貌、结构和电化学性能的影响。结果表明,碳的加入使MnO2晶型由γ型转变为α型,葡萄糖加热分解后生成无定型的碳覆着在二氧化锰颗粒的表面,抑制了晶粒生长而使晶粒细化。充放电测试结果表明,在葡萄糖浓度为1.5 g/L、电流密度为2 A·g-1条件下二氧化锰的比电容为722.2 F·g-1。与包覆二氧化锰前比较,包覆后比电容提高了64.6%。经过4000圈充放电循环后电容保持率为74.72%,表现出良好的电容特性和循环性能。  相似文献   

14.
本研究以空腔细胞组成的栓皮栎为原料, KOH为活化剂制备了具有多孔结构的栓皮栎软木基多孔活性炭。以此方法制得的活性炭呈薄片状外形, 最大比表面积达到2312 m 2/g, 具有特殊的微孔-介孔结构。在呈碱性的KOH三电极体系中, 0.1 A/g电流密度时比电容达296 F/g; 两电极体系中, 5 A/g时的比电容达到201 F/g, 循环5000次后电容保持率达99.5%。在呈中性的Na2SO4两电极体系中, 电流密度0.5 A/g (174 F/g)至50 A/g (140 F/g)时电容保持率达80.5%, 倍率性能良好, 能量密度高达19.62 Wh/kg。  相似文献   

15.
锂金属负极以其最高的理论比容量(3860 mAh·g -1)和最低的电化学电位(-3.04 V (vs SHE))被誉为电池界的“圣杯”。但是锂金属电池的缺点也尤为明显: 充放电过程中锂金属电池容易在负极不均匀沉积从而产生锂枝晶, 锂枝晶的产生会造成固体电解质介面(SEI)膜的持续破裂, 不稳定的SEI膜又会加剧锂枝晶的形成, 进而刺穿隔膜, 导致电池的循环性能下降, 产生安全隐患, 所以采取相应的措施在负极均匀沉积金属锂尤为重要。本研究使用商业化的铜网, 通过碱性溶剂的氧化和空气气氛煅烧, 在铜网表面形成均一的亲锂氧化铜纳米片阵列。铜网的3D结构可以有效减小电流密度, 亲锂的纳米片阵列可以降低锂的沉积过电势, 均匀沉积锂, 有效抑制锂枝晶的产生。在电流密度为3 mA·cm -2的半电池测试中, 稳定循环230圈后库伦效率稳定维持在99%以上; 搭配磷酸铁锂(LFP)全电池测试, 在1C(0.17 mA·mg -1)条件下可稳定循环300圈, 容量保持率为95%。本研究为锂金属负极3D集流体的设计提供了新思路。  相似文献   

16.
阚侃  王珏  付东  郑明明  张晓臣 《材料工程》2022,50(2):94-102
以石墨烯纳米片为骨架,聚吡咯为碳源,设计构建氮掺杂碳纤维包覆石墨烯纳米片(NFGNs)复合材料。采用SEM,XRD,Raman,FTIR,XPS和BET对材料进行表征,结果表明:相互连通的氮掺杂碳纳米纤维均匀地包覆生长在石墨烯纳米片层表面;NFGNs-800复合材料的氮原子分数为11.53%,比表面积为477.65 m2·g-1。电容特性测试结果表明:NFGNs-800电极材料的比电容为323.3 F·g-1(1.0 A·g-1),且具有良好的倍率特性;NFGNs-800超级电容器在功率密度为10500 W·kg-1时,能量密度为87.1 Wh·kg-1;经过10000次恒流充放电循环后,比电容保持率95.9%,库仑效率保持在99%以上。  相似文献   

17.
通过水蒸气二氧化碳(H2 O(gas)-CO2)共活化的物理活化方法制备聚苯胺基活性碳被广泛应用于商业活性碳的规模化生产,相比于化学活化方法,该方法制备的活化产物无活化剂残留、 清洗简单且工艺过程环保.以聚苯胺为原料,探究了H2 O(gas)的量和CO2分压对活化产物的影响.采用氮气吸/脱附、 扫描电镜(SEM)、 透...  相似文献   

18.
通过水热法, 利用氧化石墨烯(GO)和二价锰盐, 一步合成了还原氧化石墨烯/MnO2(RGO/M)复合电极材料。采用X射线衍射(XRD)、X射线光电子能谱(XPS)、拉曼光谱(RS)、傅里叶红外光谱(FTIR)和场发射扫描电镜(FESEM)等测试电极材料的物性, 通过循环伏安、交流阻抗和恒流充放电等方法研究电极材料的电化学性能。结果表明, 在一定水热反应条件下, 通过控制GO与二价锰盐配比, 可以调节RGO/M的结构及其电化学性能。在1 A/g电流密度下, 所得RGO/M复合电极的比电容可达277 F/g, 经过500次循环后, 保持率达到98%。  相似文献   

19.
本研究以氧化石墨烯分散液(GO)和硝酸镍(Ni(NO3)2·6H2O)为前驱体, 通过一步水热法制备自支撑三维还原氧化石墨烯/NiO复合电极材料(3D rGO/NiO)。用XRD和SEM等分析结果表明, 纳米NiO颗粒均匀分散在三维多孔石墨烯表面。当GO与Ni(NO3)2·6H2O质量比为1 : 4时, 3D rGO/NiO在电流密度为1 A·g-1 下比电容可达1208.8 F·g-1; 当电流密度从0.2 A·g-1增加到10 A·g-1时, 复合电极材料电容保持率高于72.6%; 在电流密度为10 A·g-1下进行恒流充放电循环测试10000次后, 其比电容仍然保持为初始比电容的93%, 表明该复合电极材料具有良好的倍率性能和循环稳定性能。3D rGO/NiO复合电极材料具有比纯NiO或rGO更优异的电化学性能。  相似文献   

20.
以天然矿物纤水镁石为模板、蔗糖为碳源制备多孔碳纳米管, 并以硫脲为氮、硫源, 采用水热法制备氮/硫共掺杂的碳纳米管。结果表明, 掺杂碳纳米管继承了纤水镁石模板的柱状结构, 呈现中空管状, 增大了模板炭的比表面积和孔容。在6 mol·L-1 KOH电解液中, 电流密度为1 A·g-1时, 未掺杂碳纳米管的比电容为62.2 F·g-1, 氮掺杂之后碳纳米管的比电容为97.0 F·g-1, 氮/硫共掺杂的碳纳米管比电容为172.0 F·g-1, 氮/硫共掺杂后碳纳米管的电化学性能比未掺杂的提高近3倍; 循环1000次电容保持率达89%, 说明掺/硫共掺杂碳纳米管具有良好的电化学性能。此外, 组装的对称型超级电容器同样展示了良好的电容性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号