首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
《Ceramics International》2020,46(13):21172-21181
A mesophase of Al2OC was first determined in AlN powder synthesized in batch quantities via a carbothermal reduction nitridation (CRN) process. The formation and elimination mechanisms of the mesophase were investigated. Effects of the mesophase on properties of the AlN ceramic substrates were evaluated via bending strength and thermal conductivity tests of the substrates fabricated with AlN powder of different O contents. At the conditions of the synthetic furnace, i.e. T = 1700 °C, PN2 = 10−5 kPa, and PCO = 10−0.008–100.973 kPa, the formation of Al2OC is thermodynamically favorable. By increasing the flow rate of N2 in the synthetic furnace, the formed Al2OC was unstable and decomposed into AlN. The properties of the AlN substrates depend on the O content of the AlN powder. The thermal conductivity/bending strength of the AlN substrates increase or decrease, accordingly, based the O content of the reduced AlN powder. AlN substrates made of AlN powder with 0.84 wt% oxygen content show a thermal conductivity and bending strength of 176.3 W/(m·K) and 421.3 MPa, respectively.  相似文献   

2.
《Ceramics International》2016,42(9):11217-11223
Reaction ignition and chemical mechanisms in volume combustion synthesis of TiB2 via TiO2–B2O3–Mg precursors were studied using in-situ differential thermal analysis, X-ray diffraction, scanning electron microscopy and thermochemical modeling. Mg–TiO2 samples ignited at 607 °C through a sudden single step solid-solid reaction while Mg–B2O3 samples ignited at 810 °C after melting of magnesium. X-ray diffraction analysis revealed that reduction of TiO2 occurs in multiple steps and forms intermediate compounds. Results showed that heat released from the first reaction between TiO2 and Mg ignites the reactions between Mg, Ti and B2O3 resulting in the formation of TiB2. Samples with larger TiO2 particle size or a higher sample surface to volume ratio showed a two-step reaction behavior and the released heat in the first solid state reaction was insufficient for the propagation of the reaction throughout the sample. In addition, Mg3B2O6 undesired by-product was formed as a result of this two-step reaction.  相似文献   

3.
《Ceramics International》2021,47(22):31383-31388
In this study, MgSiN2 is prepared via combustion synthesis under low-pressure nitrogen (0.1 MPa), and the effects of the mixture composition and nitrogen pressure on the obtained products are investigated. The combustion temperature increases with the amount of silicon, and β-Si3N4 is detected as the main impurity when a significant amount of silicon is incorporated. In addition, the combustion temperature increases with the nitrogen pressure, and the purity of MgSiN2 increases because the high pressure restricts the vaporization of magnesium. These results suggest that increasing magnesium content is efficient for the synthesis of single-phase MgSiN2 at 0.1 MPa of nitrogen because magnesium is volatilized from the reaction system under the low nitrogen pressure. Hence, single-phase MgSiN2 can be synthesized under 0.1 MPa of nitrogen using a mixture containing a significant amount of magnesium.  相似文献   

4.
The effect of milling time on the phase formation and particle size of nickel niobate, NiNb2O6, powder synthesized by a solid-state reaction via a vibro-milling technique was investigated. Powder samples were characterized using DTA, XRD, SEM and laser diffraction techniques. It was found that the smallest particle size of 32 nm was achieved at 25 h of vibro-milling after which a higher degree of particle agglomeration was observed on continuation of milling to 35 h. In addition, by employing an appropriate choice of the milling time, a narrow particle size distribution curve was also observed.  相似文献   

5.
《Ceramics International》2015,41(4):5881-5887
Large amounts of MgAl2O4 micro-rods were successfully synthesized using the molten-salt technology. The effect of KCl contents on the formation of MgAl2O4 micro-rods was investigated. The structure and morphology of MgAl2O4 were investigated by means of powder X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy, respectively. The experimental results showed that the contents of KCl significantly influenced the formation of MgAl2O4 micro-rods. MgAl2O4 micro-rods could be prepared at 1150 °C with a weight ratio of 100:1 between the salt and the starting materials. The formation of MgAl2O4 micro-rods could be suggested to be due to the inhomogeneous nucleation and orientated growth perpendicularly to the surfaces of Al2O3 grains. An impedance-type humidity sensor was finally fabricated based on the as-prepared MgAl2O4 micro-rods. According to tests of the humidity performance, MgAl2O4 micro-rods might be suitable for high-performance humidity sensors.  相似文献   

6.
《Ceramics International》2017,43(18):16676-16683
A ternary BiFeO3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (BF-PMN-PT) solid solution with a composition far away from morphotropic phase boundaries (MPB) has been synthesized by solid-state reaction method. XRD analysis revealed a pure perovskite phase without any trace of pyrochlore phase. The system exhibited a broad phase transition with transition temperature Tc ~ 285 °C. The hysteresis loop of the ceramics displayed high remanent polarization (Pr ~ 41.23 μC/cm2) and coercive field (Ec ~ 35.41 kV/cm). The true-remanent polarization after removing the non-remanent components was evaluated by remanent hysteresis and PUND tasks, which revealed the actual usable polarization component for memory devices. Time-dependent compensated plots confirmed the resistive-leakage free characteristic of the BF-PMN-PT ceramics which makes them useful for application in devices like actuators where the electric field is switched at different rates. Fatigue test showed the ferroelectric parameters (switching and non-switching polarization values) do not vary over 107 cycles which is important especially in electromechanical transducers and memory devices. A large piezoelectric charge coefficient (d33 ~ 115 pC/N) was observed for the investigated ceramics.  相似文献   

7.
Ce2(WO4)3 ceramics have been synthesized by the conventional solid-state ceramic route. Ce2(WO4)3 ceramics sintered at 1000 °C exhibited ?r = 12.4, Qxf = 10,500 GHz (at 4.8 GHz) and τf = −39 ppm/°C. The effects of B2O3, ZnO–B2O3, BaO–B2O3–SiO2, ZnO–B2O3–SiO2 and PbO–B2O3–SiO2 glasses on the sintering temperature and microwave dielectric properties of Ce2(WO4)3 were investigated. The Ce2(WO4)3 + 0.2 wt% ZBS sintered at 900 °C/4 h has ?r = 13.7, Qxf = 20,200 GHz and τf = −25 ppm/°C.  相似文献   

8.
Many silicates and alumino-silicates feature remarkable mechanical properties at high temperatures, low thermal expansion and high thermal shock resistance, optimum dielectric properties, etc. The poor interdiffusion, due to their characteristic partially covalent bonding however, greatly complicates the obtainment of dense and/or phase pure articles, by conventional sintering. The present paper concerns the realization of high-purity cordierite (2MgO·2Al2O3·5SiO2) components by direct thermal treatment in air of preceramic polymers embedding suitable nano-sized oxide particles. More precisely, a selection of silicone resins allowed the obtainment of both dense and highly porous bodies.  相似文献   

9.
This study reports on the mechanochemical synthesis (MCS) of SiO2-encapsulated WSi2/W5Si3 nanoparticles starting from tungsten oxide (WO3), silicon dioxide (SiO2) and magnesium (Mg) powder blends. MCS process, carried out in a high-energy ball mill, was evaluated in terms of various milling time and initial composition of WO3-SiO2-Mg powders. A subsequent purification step using aqueous HCl solution was conducted on the as-synthesized powders. Compositional, microstructural and thermal properties of the powders were characterized by using X-ray diffractometer (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and differential scanning calorimeter (DSC). Based on the adiabatic temperature values, SiO2-encapsulated WSi2/W5Si3 nanoparticles exhibit a high potential as a result of a mechanically induced self-sustaining reaction. The exothermic reaction took place after 20?min of milling, and WSi2, W5Si3, W, MgO, Mg2SiO4 and residual Mg phases were detected. The utilization of an optimized amount of excess Mg (3.5?mol) resulted in the elimination of unwanted Mg2SiO4 and W phases, leaving behind WSi2, W5Si3, Mg2Si, MgO and Mg. After removal of Mg-based by-products by leaching process, WSi2, W5Si3 and a very small amount of SiO2 phases were obtained. TEM analysis revealed that W silicide nanoparticles with an average size of 97?nm were encapsulated by SiO2 layers with an average thickness of 15?nm.  相似文献   

10.
Barium titanate (BT) nanopowder was synthesized by a solid state reaction via a rapid vibro-milling technique. The effect of milling time on phase formation and particle size of BT powder was investigated. Powder samples were characterized using XRD (X-ray diffraction) and SEM techniques. It was found that the resulting BT powders have a range of particle size depending on milling times. Production of a single-phase BT nanopowder can be successfully achieved by employing a combination of 30 h milling time and calcination conditions of 1200 °C for 2 h.  相似文献   

11.
《Ceramics International》2016,42(15):16453-16462
Solid-phase synthesis of wollastonite has been determined to be primarily affected by the structural and mineralogical properties of the siliceous stock – its chemico-mineralogical composition (purity and presence of amorphous component) and granularity, as well as variations in phase change behaviour at high temperatures. Wollastonite synthesis occurs most completely in the mixtures of calcium carbonate with amorphous (microsilica) or semi-crystalline (gaize or diatomite) siliceous stock, yielding 92–96% wollastonite at 1200 °С. For natural quartz-based stock (marshallite), wollastonite yield does not exceed 60–80%. Solid-phase wollastonite synthesis in mixtures of reactive amorphous or semi-crystalline siliceous stock with varying quantities of calciferous stock (10–50 wt% CaO) produces wollastonitic ceramics chemically resistant to molten aluminium with the specific gravity of 1.1–1.7 g/cm3 and the compressive strength of 28–76 MPa, which exceeds the requirements for ceramics in foundry equipment by a factor of 3–3.5.  相似文献   

12.
《Ceramics International》2016,42(9):11015-11019
Preparation of TaB2/mullite composites from a cost- and energy-effective mixture of reactants was conducted by self-propagating high-temperature synthesis (SHS). The sample stoichiometry of 1.18Ta2O5+(2.36x)B2O3+6Al+(2y)Si was formulated with x=1.0–1.3 and y=1.0–2.0 for the study of the effects of excess B2O3 (x>1.0) and Si (y>1.0) on combustion characteristics and product compositions. The synthesis reaction involved coreduction of Ta2O5 and B2O3 by Al and Si. The reaction exothermicity and combustion velocity increased slightly with increasing B2O3 but decreased considerably with Si. Formation of TaB2 and mullite was improved by adopting excess B2O3 and Si to compensate for their evaporation loss at high combustion temperatures up to about 1600 °C. The sample with x=1.3 and y=1.5 was shown to yield the optimum formation of TaB2 and mullite. Mullite grains with a tubing-like shape were produced from in situ formed SiO2 and Al2O3 and had an atomic composition close to that of 3:2 mullite (3Al2O3·2SiO2).  相似文献   

13.
Pure and lanthanum doped barium bismuth titanate BaBi4−xLaxTi4O15 (BBLT, x=0, 0.05, 0.15, 0.30) ceramics were prepared utilizing solid state method. The X-ray diffraction (XRD) data confirmed formation of single-phase Aurivillius compounds while SEM micrographs did not show evident grain size change of doped ceramics. Dielectric properties were investigated in 1.21 kHz to 1 MHz frequency range and in the temperature range of 20 to 727 °C. When Bi3+ is substituted with La3+, a significant disorder was induced and the material exhibited broadening of the phase transition. Impedance analysis confirmed the presence of two semicircular arcs in doped samples suggesting the existence of grain and grain-boundary conduction. The dc-conductivity and activation energies were evaluated for all compositions.  相似文献   

14.
A new approach in the synthesis of amorphous SiBCN has been suggested using high-energy shaker ball mill. Hexagonal boron nitride (h-BN), graphite (C) and amorphous silicon (Si) were blended according to the mole ratio of 1:1:1, and then ball milled by different ball-to-powder mass ratio, diameter of ball and milling time. The structural evolution at different stages of milling has been characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution electron microscopy (HREM) and electron energy-loss spectroscopy (EELS). The results showed that the SiBCN powders were mainly amorphous with some nanocrystlline phases. The thermal stability of SiBCN powders has been analyzed by thermogravimetry in argon. Mass loss occurred at high temperature, especially above 1000 °C.  相似文献   

15.
《Ceramics International》2015,41(6):7312-7317
Ultrafine ZrB2 powders were synthesized in radio-frequency atmospheric-pressure thermal plasma using ZrCl4, B, and Mg as raw materials. The metallothermic reaction was ignited by the high temperature flame when the mixed precursors were carried into thermal plasma, and then propagated with the exothermic reaction enthalpies and the external energy supplied by plasma flame. Both thermodynamic analysis and experiments were conducted. The as-prepared samples were characterized by X-ray Diffraction, Transmission Electron Microscopy, and particle size analyzer. Results showed that the obtained ZrB2 powders had particle size of about 100 nm and surface area of 30.75 m2/g. The laboratory production rate was about 300 g/h.  相似文献   

16.
《Ceramics International》2016,42(4):4775-4778
Lead-free piezoelectric sodium bismuth titanate (NBT) ceramics are synthesized by a solid state reaction method. Poled NBT ceramics possess rhombohedral R3c structure. Vibrational phonon frequencies associated to Bi–O, Na–O, TiO6 octahedra and oxygen vibrations are observed. Experimentally unreported lowest frequency region peak centered at 111 cm−1 is assigned to E(TO1) mode related to Bi–O vibrations. Appearance of lowest frequency mode may be due to well-polished surfaces with reduced Rayleigh scattering background and well-defined ordering of Bi and Na ions in the lattice.  相似文献   

17.
《Ceramics International》2017,43(14):11097-11108
Impedance spectroscopy has been applied to explore electrical properties of polycrystalline double perovskite oxides A2LuTaO6 (A = Ba, Sr, Ca; ALT). The phase purity and microstructural analysis of the samples are obtained from XRD and SEM. Ba2LuTaO6 (BLT) crystallizes in a single phase whereas in Sr2LuTaO6 (SLT) and Ca2LuTaO6 (CLT) a small secondary phase of Lu2O3 was detected. The Nyquist plots for ALT reveals the rising dominance of the grain boundary contribution to the conduction process with increasing temperature. The complex modulus plots confirm the presence of both the grain and grain boundary contributions to the relaxation process at low temperatures. The relaxation mechanism is seen to be shifted from its ideal character as observed in the Nyquist plots. The frequency dependent conductivity spectra follow the power law behavior. Small polaron hopping is responsible for the electrical conduction in these materials in the entire temperature range. Density functional theory calculations are performed to understand the electronic structure of the materials. The density of states (DOS) for BLT, SLT and CLT establishes the semiconducting ground state of the materials. The conductivity mechanism is analysed on the basis of the calculated DOS.  相似文献   

18.
《Ceramics International》2016,42(6):6673-6681
Polycrystalline samples of scheelite-type Cd1−3xxGd2x(MoO4)1−3x(WO4)3x solid solution with limited homogeneity (0<x≤0.25) and cationic vacancies (denoted as ⌷) have successfully prepared by a high-temperature annealing of CdMoO4/Gd2(WO4)3 mixtures composed of 50.00 mol% and less of gadolinium tungstate. Initial reactants and obtained ceramic materials were characterized by XRD, simultaneous DTA–TG, and SEM techniques. A phase diagram of the pseudobinary CdMoO4–Gd2(WO4)3 system was constructed. The eutectic point corresponds to 1404±5 K and ~70.00 mol% of gadolinium tungstate in an initial CdMoO4/Gd2(WO4)3 mixture. With decreasing of Gd3+ content in a CdMoO4 framework, the melting point of Cd1−3xxGd2x(MoO4)1−3x(WO4)3x increases from 1406 (x=0.25) to 1419 K (x=0.0833), and next decreases to 1408 K (x=0). EPR method was used to identify paramagnetic Gd3+ centers in Cd1−3xxGd2x(MoO4)1−3x(WO4)3x for different values of x parameter as well as to select biphasic samples containing both Cd0.250.25Gd0.50(MoO4)0.25(WO4)0.75 and Gd2(WO4)3.  相似文献   

19.
《Ceramics International》2022,48(4):4456-4463
Direct reaction of precursors with the products of detonation remains an underexplored area in the ever-growing body of detonation synthesis literature. This study demonstrated the synthesis of silicon carbide during detonation by reaction of elemental silicon with carbon products formed from detonation of RDX/TNT mixtures. Continuum scale simulation of the detonation showed that energy transfer by the detonation wave was completed within 2–9 μs depending on location of measurement within the detonating explosive charge. The simulated environment in the detonation product flow beyond the Chapman-Jouguet condition where pressure approaches 27 GPa and temperatures reach 3300 K was thermodynamically suitable for cubic silicon carbide formation. Carbon and added elemental silicon in the detonation products remained chemically reactive up to 500 ns after the detonation wave passage, which indicated that the carbon-containing products of detonation could participate in silicon carbide synthesis provided sufficient carbon-silicon interaction. Controlled detonation of an RDX/TNT charge loaded with 3.2 wt% elemental silicon conducted in argon environment lead to formation of ~3.1 wt% β-SiC in the condensed detonation products. Other condensed detonation products included primarily amorphous silica and carbon in addition to residual silicon. These results show that the energized detonation products of conventional high explosives can be used as precursors in detonation synthesis of ceramic nanomaterials.  相似文献   

20.
《Ceramics International》2016,42(12):14011-14020
Nanoparticles of ceria–ruthenium oxide solid solutions with composition Ce1−xRuxO2−δ (x=0.005–0.02) were successfully produced by self–propagating room temperature synthesis using reaction between metal nitrates and sodium hydroxide. These compositions were characterized by X–ray powder diffraction (XRD), Raman spectroscopy, specific surface area, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy dispersive X–ray spectroscopy (EDX). The experimental measurements were complemented by calculations based on the ion–packing model. XRD analysis revealed the presence of single–phase solid solutions with CeO2 fluorite structure (regardless of dopants concentration) and Raman spectroscopy confirmed the presence of the RuO2 phase. Electrochemical impedance spectroscopy (EIS) measurements of sintered samples at different temperatures showed that the small ionic radius dopant reduces oxygen vacancies mobility that is responsible for the conductivity of these ceramics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号