首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 265 毫秒
1.
秦洪伟  刘妍 《现代化工》2023,(6):245-248
通过恒电位还原氧化石墨烯的方法制备电化学还原氧化石墨烯修饰电极(rGO/GCE),再结合浸渍法制备出电化学还原氧化石墨烯纳米银复合修饰电极(rGO-AgNPs/GCE)。考察了螺旋霉素(SPY)在rGO-AgNPs/GCE上的电化学响应情况,并对修饰量、电还原时间、浸渍时间、支持电解质种类及酸碱度等实验条件进行优化。结果显示,在2.0×10-6~1.0×10-4 mol/L浓度范围内,SPY氧化峰电流与其浓度呈显著的线性关系,线性方程为Ip=0.528 5c+26.085,r=0.997 3,检测下限为4.0×10-7 mol/L。稳定性、可重复性和回收率实验取得令人满意的结果。  相似文献   

2.
韩双  张楠  王慧  张璇  杨金栾  张蔓琳  张志超 《化工学报》1951,73(8):3758-3767
金霉素(CTC)的滥用给自然环境和人类健康带来了严重的不良影响。建立了一种简便、经济、高效的CTC分子印迹电化学传感器。该传感器的分子印迹膜由邻苯二胺在还原型氧化石墨烯-聚乙烯亚胺复合物(RGO-PEI)修饰的玻碳电极上电聚合而成。采用扫描电子显微镜、红外吸收光谱和紫外可见吸收光谱对RGO-PEI复合材料进行了表征。RGO-PEI复合材料的高比表面积和丰富的氨基基团提高了该传感器检测的灵敏度和稳定性。在优化条件下,该传感器对CTC浓度响应的线性范围为(5.0 × 10-7)~(1.0 × 10-4)mol/L,检测限为 1.67 × 10-7 mol/L (信噪比,S/N=3)。此外,该传感器对卡那霉素、土霉素和盐酸多西环素等干扰物质的响应很小,可用于实际样品中CTC的检测,回收率为102.7% ~ 104.7%,是一种简单、高效的电化学方法。  相似文献   

3.
韩双  张楠  王慧  张璇  杨金栾  张蔓琳  张志超 《化工学报》2022,73(8):3758-3767
金霉素(CTC)的滥用给自然环境和人类健康带来了严重的不良影响。建立了一种简便、经济、高效的CTC分子印迹电化学传感器。该传感器的分子印迹膜由邻苯二胺在还原型氧化石墨烯-聚乙烯亚胺复合物(RGO-PEI)修饰的玻碳电极上电聚合而成。采用扫描电子显微镜、红外吸收光谱和紫外可见吸收光谱对RGO-PEI复合材料进行了表征。RGO-PEI复合材料的高比表面积和丰富的氨基基团提高了该传感器检测的灵敏度和稳定性。在优化条件下,该传感器对CTC浓度响应的线性范围为(5.0 × 10-7)~(1.0 × 10-4)mol/L,检测限为 1.67 × 10-7 mol/L (信噪比,S/N=3)。此外,该传感器对卡那霉素、土霉素和盐酸多西环素等干扰物质的响应很小,可用于实际样品中CTC的检测,回收率为102.7% ~ 104.7%,是一种简单、高效的电化学方法。  相似文献   

4.
将Eu3+离子分散于普鲁士蓝溶液中,制备Eu3+离子掺杂类普鲁士蓝化学修饰电极,采用循环伏安法和交流阻抗技术对所制备电极进行电化学性能和稳定性测试,并通过修饰物的固体荧光光谱和拉曼光谱对其进行表征、分析。研究结果表明:Eu3+已掺入到氰基桥联分子结构中,且该化学修饰电极制备简单,稳定性好,伏安响应比较优异。所制备的修饰电极对抗坏血酸的电化学氧化有很好的催化活性,催化氧化峰电流与其浓度在2.0×10-6~2.0×10-3mol/L范围内呈良好的线性关系,线性方程为Ip(μA)=1.458 2C(μmol/L)+2.257 6,R=0.999 2(n=6); Ip(μA)=0.003 1C (μmol/L)+1.433 7,R=0.999 8(n=6)。检出限为1.0×10-6mol/L。  相似文献   

5.
利用滴涂法和简单的恒电位还原法制备性能稳定的电化学还原氧化石墨烯和多壁碳纳米管复合修饰电极(rGO/MWCNTs-GCE),运用循环伏安法(CV)和差分脉冲伏安法(DPV)研究了卡马西平(CBZ)在所制备的修饰电极上的电化学行为,并对测定条件进行了优化。结果表明,CBZ在6.0×10-6~2.0×10-4 mol/L浓度范围内,氧化峰电流值与浓度呈明显的线性关系,检出限为1.0×10-6 mol/L。优化实验条件后的电极呈现出良好的灵敏度、稳定性和重现性,可用于卡马西平的快速检测。  相似文献   

6.
运用差分脉冲伏安法(DPV)研究了磺胺在石墨烯锰卟啉复合材料修饰电极(GR-MnTPP/GCE)上的电化学行为。结果表明,在pH=7. 0的磷酸盐缓冲溶液中产生了一个不可逆的氧化峰,峰电位为0. 89 V;同时在5. 0×10-6~2. 0×10-4mol/L范围内,磺胺的电化学检测峰电流与浓度呈现明显的线性关系,线性方程为y=0. 114c+11. 982,相关系数R=0. 998 9,平行测定的相对误差小于1. 378%(n=7)。研究表明,利用石墨烯锰卟啉复合材料修饰电极对磺胺的电化学检测有良好的响应效果,可以应用于对磺胺的测定。  相似文献   

7.
制备了石墨烯和金纳米粒子的复合物(GS-AuNP),用扫描电镜对其进行了表征。将该复合物和壳聚糖(CS)依次修饰到玻碳电极(GCE)表面,制得修饰电极(CS/GS-AuNP/GCE)。以3-氨基苯硼酸盐酸盐(APBA)为单体,肾上腺素(EP)分子为模板,采用循环伏安法(CV)在该修饰电极表面进行电聚合,制备了分子印迹聚合物(MIP)膜,洗脱掉模板分子EP后得到分子印迹传感器(MIP/CS/GS-AuNP/GCE),用于肾上腺素的检测。溶液中的EP可与传感器表面的MIP特异性结合,在富集一定时间后,通过差分脉冲伏安法(DPV)检测溶液中EP的浓度。在优化的实验条件下,DPV峰电流分别在1.0×10-7~1.0×10-5 mol/L及1.0×10-5~1.0×10-4 mol/L EP的浓度范围内随EP浓度的增大而呈线性增大,检出限为5×10-8 mol/L。制备的MIP/CS/GS-AuNP/GCE传感器成功应用于实际样品中的肾上腺素含量检测,回收率在98%~105%之间。  相似文献   

8.
用电化学方法将γ-氨基丁酸聚合在玻碳电极(GCE)表面,制备了聚γ-氨基丁酸修饰电极(poly γ-aminobutyric acid modified electrode, P-γ-ABA/GCE)。探究了丹皮酚(paeonol, Pae)在此修饰电极上的电化学行为,建立了测定丹皮酚的新方法。结果表明,在pH=7.0的Na2HPO4-NaH2PO4缓冲溶液(PBS)中,Pae的浓度与氧化峰电流在2.0×10-7~8.0×10-5 mol/L范围内有良好的线性关系,相关系数R为0.992 7,检出限为8.0×10-8 mol/L。在样品Pae的测定中,回收率为96.3%~103.7%。该方法可用于实际样品的测定。  相似文献   

9.
通过实验构建了石墨烯电化学传感器,研究了该传感器对山奈酚的测定。实验结果表明在pH值=10.00的氨水-氯化铵缓冲体系中用该石墨烯修饰的电化学传感器测定山萘酚具有较好的效果,电流峰值与山奈酚浓度在1.00×10-6~2.50×10-4μg·L-1范围内呈良好的线性关系,线性回归方程为Ip(μA)=0.448+0.043 1c(μg·L-1),相关系数0.999 29,检出限为5.00×10-7μg·L-1。准确度和重现性较好。该方法操作简单、方便快捷、回收率较好,可适用于快速测定药物中山奈酚的含量。  相似文献   

10.
采用循环伏安法和悬凃法,在玻碳电极表面进行聚(3,4)-乙撑二氧噻吩(PEDOT)和多壁碳纳米管修饰,制备多壁碳纳米管-聚(3,4)-乙撑二氧噻吩复合修饰电极。通过扫描电镜观察复合电极的表面形貌,通过电化学阻抗谱(EIS)和循环伏安(CV)对复合电极进行电化学表征,用差分脉冲法(DPV)研究对苯二酚浓度与峰电流之间的线性关系。实验结果表明,制备的复合修饰电极对对苯二酚有明显的电催化作用,氧化还原峰电流明显增大;在p H为7.0的磷酸缓冲液(PBS)里,对苯二酚的峰电流最大。在1×10-5~5×10-4mol/L对苯二酚的浓度范围内,复合修饰电极的氧化峰电流值与浓度呈线性关系,其线性方程为y=47.95+0.097 9x,R2=0.961,检出限为1.9×10-6mol/L。制备的复合修饰电极能够增强电化学信号,具有较好的稳定性。  相似文献   

11.
以1,1′-双[2-(三乙氧基硅基)乙基]二茂铁单体及正硅酸乙酯为前驱物,经溶胶-凝胶过程制备了二茂铁功能化的聚倍半硅氧烷修饰电极,并将该修饰电极用于抗坏血酸(H2A)的电催化氧化测定。在pH=8.0的0.1mol·L-1 NaClO4-H3PO4缓冲溶液中,氧化峰峰电流和H2A浓度呈良好线性关系,动态线性范围2.0×10-5~1.0×10-3mol·L-1,相关系数为0.904,检测限为1.3×10-5mol·L-1。  相似文献   

12.
冯潇  郭军  张丹 《无机盐工业》2021,53(9):109-113
采用常规水溶液法合成了一种新型的有机-无机杂化多金属氧酸盐(C5H7N2O24(SiMo12O40)(简称SiMo-12)。采用红外光谱(IR)、热重分析(TG)、单晶和粉末X射线衍射(XRD)、元素分析等对SiMo-12进行了表征。以过氧化氢为氧化剂,运用SiMo-12催化碘离子氧化,考察了催化剂用量、氧化剂用量、pH、温度等因素对反应速率的影响。结果表明:该化合物属三斜晶系,P-1空间群,晶胞参数a=1.097 58(4) nm、b=1.144 88(4) nm、c=1.252 66(4) nm、α=64.665(1)°、β=64.804(1)°、γ=83.441(1)°、V=1.282 89(8) nm3Z=1、R=0.034 0、wR2=0.079 9。化合物由4个1-咪唑乙酸和一个经典的Keggin型[SiMo12O40]4-单元组成,有机配体和多金属氧酸阴离子之间通过静电作用、质子转移以及氢键作用沿x轴形成一维链,链与链之间相互平行形成平行于xy面的二维层,层与层之间再通过氢键连接而得到三维网状结构。SiMo-12在催化碘离子氧化中表现出较为优异的催化活性,在c(SiMo-12)=2.0×10-4 mol/L、c(过氧化氢)=2.0×10-3 mol/L、pH=1.4、50 ℃条件下反应速率达到2.641 6×10-5 mol/(L·s),比未加催化剂时的反应速率提高了1 565倍。  相似文献   

13.
通过种子介导生长方法,合成了形貌、粒径均一,分散性良好的双金属Ag@Au纳米粒子,并将其作为表面增强拉曼散射(SERS)基底,对氧氟沙星(OFLX)进行检测。首先在最佳实验条件下对氧氟沙星主要拉曼峰进行归属,选取1 416 cm -1拉曼特征峰。其次,对其1 416 cm -1特征峰强度与氧氟沙星浓度作线性拟合,曲线方程为Y=291.48X+3 156.8,r=0.989,检测极限可达10 -10 mol/L。该方法操作简单,灵敏度高,重现性好,可为氧氟沙星类抗生素药物的SERS检测提供依据。  相似文献   

14.
崔向红  刘晓玲 《广州化工》2011,39(21):119-121
采用简单实用的加工普鲁士蓝(PB)-多壁碳纳米管复合材料(MWCNTs)来检测多巴胺(DA)。由于碳纳米管其独特的结构,物理和化学的性质被选定作为PB电沉积的增强兼容平台。因此PB/MWCNTs/GCE修饰电极表现出良好的电化学行为。实验条件通过循环伏安法和微分脉冲伏安法来优化。在优化条件下,发现峰电流与DA的浓度在1.0×10-6~1.0×10-4 mol/L范围内呈良好的线性关系,检出限为4.5×10-7 mol/L(S/N=3)。测定DA时能有效的减少抗坏血酸对它的干扰。  相似文献   

15.
卡托普利还原Fe3+,Fe2+与邻二氮杂菲显色物在510 nm处有最大吸收,吸光度(A)与卡托普利浓度有相关性。结果表明,卡托普利浓度(c)在1×10-6~1×10-4 mol/L范围内与A呈良好的线性关系:y=0.006 4c+0.005 5,相关系数(r)=0.997 6,检测限为9.37×10-7 mol/L。该方法用于片剂卡托普利测定,结果满意。  相似文献   

16.
采用滴涂法将适量碳纳米管修饰到热解石墨电极上,后电沉积纳米氧化镍得到MWCNT/NiO/PG复合修饰电极。研究了它的电化学行为,并用于抗坏血酸的测定。试验表明,在pH=6的磷酸盐缓冲溶液中,抗坏血酸在修饰电极上产生一灵敏的氧化峰。当抗坏血酸的浓度在1.0×10-5~5.0×10-4 mol/L时,氧化峰电流与浓度呈线性关系,线性方程为:I(uA)=-0.4458-0.5922C(mmol/L),相关系数为R=-0.9989。检出限低至5.5×10-7 mol/L。该传感器重现性、稳定性、抗干扰性良好。  相似文献   

17.
通过将壳聚糖和L-半胱氨酸修饰到玻碳电极基底表面,制备了一种新型的电化学传感器,并将此传感器应用于对L-抗坏血酸的测定。通过循环伏安法和交流阻抗法对该传感器的电化学特性作了表征。通过线性伏安实验发现:L-抗坏血酸的氧化峰电流与其浓度在1.0×10-5~2.0×10-3mol/L范围内成良好的线性关系,检出限为4.3×10-6mol/L,且该传感器具有良好的重现性和稳定性,并将此传感器成功应用于对维生素C药片中L-抗坏血酸含量的检测。  相似文献   

18.
采用滴涂法制备了多壁碳纳米管-Nafion修饰玻碳电极(MWCNTs-Nafion/GCE),基于此修饰电极,建立了发酵液中色氨酸的电化学检测方法。结果表明:在pH 4.0的磷酸盐缓冲溶液中,色氨酸在MWCNTs-Nafion/GCE电极上有良好的响应,氧化峰电势为1.01 V,在5×10-7-2×10-4mol/L范围内,色氨酸氧化峰电流与其浓度呈良好的线性关系,线性方程为:Ip(10-6 A)=2.432×104 C(mol/L)+3.1452,R2为0.9973,检测限为2.7×10-8mol/L(S/N=3),回收率在98.3%~104.3%之间,相对标准偏差≤3.0%。该方法操作简单、结果稳定、选择性和灵敏度良好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号