共查询到17条相似文献,搜索用时 67 毫秒
1.
RGB-D 图像在提供场景 RGB 信息的基础上添加了 Depth 信息,可以有效地描述场景的色彩及
三维几何信息。结合 RGB 图像及 Depth 图像的特点,提出一种将高层次的语义特征反向融合到低层次的边缘
细节特征的反向融合实例分割算法。该方法通过采用不同深度的特征金字塔网络(FPN)分别提取 RGB 与 Depth
图像特征,将高层特征经上采样后达到与最底层特征同等尺寸,再采用反向融合将高层特征融合到低层,同时
在掩码分支引入掩码优化结构,从而实现 RGB-D 的反向融合实例分割。实验结果表明,反向融合特征模型能
够在 RGB-D 实例分割的研究中获得更加优异的成绩,有效地融合了 Depth 图像与彩色图像 2 种不同特征图像
特征,在使用 ResNet-101 作为骨干网络的基础上,与不加入深度信息的 Mask R-CNN 相比平均精度提高 10.6%,
比直接正向融合 2 种特征平均精度提高 4.5%。 相似文献
2.
目的 水平集模型是图像分割中的一种先进方法,在陆地环境图像分割中展现出较好效果。特征融合策略被广泛引入到该模型框架,以拉伸目标-背景对比度,进而提高对高噪声、杂乱纹理等多类复杂图像的处理性能。然而,在水下环境中,由于水体高散射、强衰减等多因素的共同作用,使得现有图像特征及水平集模型难以适用于对水下图像的分割任务,分割结果与目标形态间存在较大差异。鉴于此,提出一种适用于水下图像分割的区域-边缘水平集模型,以提高水下图像目标分割的准确性。方法 综合应用图像的区域特征及边缘特征对水下目标进行辨识。对于区域特征,引入水下图像显著性特征;对于边缘特征,创新性地提出了一种基于深度信息的边缘特征提取方法。所提方法在融合区域级和边缘级特征的基础上,引入距离正则项对水平集函数进行规范,以增强水平集函数演化的稳定性。结果 基于YouTube和Bubblevision的水下数据集的实验结果表明,所提方法不仅对高散射强衰减的低对比度水下图像实现较好的分割效果,同时对处理强背景噪声图像也有较好的鲁棒性,与水平集分割方法(local pre-fitting,LPF)相比,分割精确度至少提高11.5%,与显著性检测方法(hierarchical co-salient detection via color names,HCN)相比,精确度提高6.7%左右。结论 实验表明区域-边缘特征融合以及其基础上的水平集模型能够较好地克服水下图像分割中的部分难点,所提方法能够较好分割水下目标区域并拟合目标轮廓,与现有方法对比获得了较好的分割结果。 相似文献
3.
深度学习在计算机视觉领域已经取得很大发展,虽然基于深度学习的实例分割研究近年来才成为研究热点,但其技术可广泛应用在自动驾驶,辅助医疗和遥感影像等领域。实例分割作为计算机视觉的基础问题之一,不仅需要对不同类别目标进行像素级别分割,还要对不同目标进行区分。此外,目标形状的灵活性,不同目标间的遮挡和繁琐的数据标注问题都使实例分割任务面临极大的挑战。本文对实例分割中一些具有价值的研究成果按照两阶段和单阶段两部分进行了系统性的总结,分析了不同算法的优缺点并对比了模型在COCO数据集上的测试性能,归纳了实例分割在特殊条件下的应用,简要介绍了常用数据集和评价指标。最后,对实例分割未来可能的发展方向及其面临的挑战进行了展望。 相似文献
4.
本次课题所研究的图像检测主要采用边缘检测的方法来进行的。本文对这次课题中所使用的四种检测方法--Sobel边缘检测算子,Prewitt边缘检测算子,Canny边缘检测算子和Roberts边缘检测算子进行了详细的介绍和具体的算法设计,并对整个系统结构做了说明。然后对四种检测方法编写MATLAB程序。 相似文献
5.
王彦林 《电脑编程技巧与维护》2014,(19):78-79
基于边缘检测算法的图像分割技术是图像分析基础算法之一,在讨论边缘检测算法基本原理的基础上,在Matlab中实现了边缘检测算法,并对Sobel算子、Prewitt算子和Roberts算子在边缘检测中的效果进行了对比分析。 相似文献
6.
利用相对熵选择阈值和检测提出一种图象分割算法。其主要思想是通过相对熵来选择最佳阈值,然后用任何一种边缘检测对图象进行分割。将所提出的算法和基于局部熵的算法分别用于现场颗粒物料图象的分割,实验结果表明,该算法优于基于局部熵的图象分割算法。 相似文献
7.
基于边缘信息的阈值分割方法因为在保持目标轮廓和分割低对比度图像方面具有良好性能,特别适用于对工业生产图片的分割,但是传统方法普遍存在对噪声敏感和阈值难以选取的问题,针对这些问题,提出一种基于SUSAN边缘信息的自适应图像阈值分割算法,使用SUSAN特征响应描述像素的边缘信息,以有效抑制噪声和弱边界的影响。基于图谱理论的最小最大割阈值分割算法相比于其他分割算法时空复杂度大大降低,且获取的阈值全局最优。实验结果表明,该算法能够准确分割出目标,保留丰富的细节内容,对低对比度图像和噪声图像也有很好的分割效果,获取的阈值相比于传统算法更优。 相似文献
8.
9.
机场识别作为模式识别领域的问题之一,在军事上有着重要的应用前景。图像的边缘包含了大量的梯度信息,图像中的真实边界点处的梯度强度大于其左右领域的梯度强度值。本文结合机场识别自身的特点,通过对几种经典的边缘分割算法的比较,并对实验结果进行分析,论述了几种不同分割算法的优劣,为了进一步的识别工作做好了准备。 相似文献
10.
近年来,随着计算水平的不断提高,基于深度学习的实例分割方法的研究取得了巨大的突破。图像实例分割可以区分图像中同一类的不同实例,是计算机视觉领域的重要研究方向,具有十分广阔的研究前景,在场景理解、医学图像分析、机器视觉、增强现实、图像压缩和视频监控等方面取得了巨大的实际应用价值。近年来,实例分割方法的更新频率越来越高,但目前很少有文献全面系统地分析实例分割相关研究背景。对基于深度学习的图像实例分割方法进行了全面系统的分析与总结,首先,介绍目前实例分割中常用的公共数据集与评价指标,并对现有数据集面临的挑战进行了分析;其次,分别从两阶段分割方法与单阶段分割方法的特性上对实例分割算法进行梳理与总结,阐述其核心思想与设计思路,并对这两类方法的优势与不足进行总结;然后,在公共数据集上评估这些模型的分割精度和速度;最后,总结目前实例分割面临的困难与挑战,以及面对挑战的解决思路,并对未来的研究方向进行展望。 相似文献
11.
目的 实例分割通过像素级实例掩膜对图像中不同目标进行分类和定位。然而不同目标在图像中往往存在尺度差异,目标多尺度变化容易错检和漏检,导致实例分割精度提高受限。现有方法主要通过特征金字塔网络(feature pyramid network,FPN)提取多尺度信息,但是FPN采用插值和元素相加进行邻层特征融合的方式未能充分挖掘不同尺度特征的语义信息。因此,本文在Mask R-CNN(mask region-based convolutional neural network)的基础上,提出注意力引导的特征金字塔网络,并充分融合多尺度上下文信息进行实例分割。方法 首先,设计邻层特征自适应融合模块优化FPN邻层特征融合,通过内容感知重组对特征上采样,并在融合相邻特征前引入通道注意力机制对通道加权增强语义一致性,缓解邻层不同尺度目标间的语义混叠;其次,利用多尺度通道注意力设计注意力特征融合模块和全局上下文模块,对感兴趣区域(region of interest,RoI)特征和多尺度上下文信息进行融合,增强分类回归和掩膜预测分支的多尺度特征表示,进而提高对不同尺度目标的掩膜预测质量。结果 在MS ... 相似文献
12.
运用人工智能技术将是构建下一代智慧图书馆的关键,为了实现图书的定位和识别,提出一种基于改进Mask R-CNN的在架图书书脊图像实例分割方法.考虑到图书密集排列、具有一定的旋转性、副本纹理极相似等难点,改进锚框为旋转矩形框,提出旋转区域建议网络取代区域建议网络;提出旋转特征提取方法可减少池化误差且有效提取目标特征,结合掩膜的旋转对齐以提升预测掩膜的准确性.建立了一个包含1849张在架图书书脊图像的标注数据集,提出方法的测试结果大幅度优于其他重要的实例分割算法,证实了在网络中使用旋转特征对于具有一定朝向的、密集的目标分割难题很有效. 相似文献
13.
显著性实例分割是指分割出图像中最引人注目的实例对象。现有的显著性实例分割方法中存在
较小显著性实例不易检测分割,以及较大显著性实例分割精度不足等问题。针对这 2 个问题,提出了一种新的
显著性实例分割模型,即注意力残差多尺度特征增强网络(ARMFE)。模型 ARMFE 主要包括 2 个模块:注意力
残差网络模块和多尺度特征增强模块,注意力残差网络模块是在残差网络基础上引入注意力机制,分别从通道
和空间对特征进行选择增强;多尺度特征增强模块则是在特征金字塔基础上进一步增强尺度跨度较大的特征信
息融合。因此,ARMFE 模型通过注意力残差多尺度特征增强,充分利用多个尺度特征的互补信息,同时提升
较大显著性实例对象和较小显著性实例对象的分割效果。ARMFE 模型在显著性实例分割数据集 Salient Instance
Saliency-1K (SIS-1K)上进行了实验,分割精度和速度都得到了提升,优于现有的显著性实例分割算法 MSRNet
和 S4Net。 相似文献
14.
在交通安全领域,道路抛洒物易引发交通事故,构成了交通安全隐患。针对传统抛洒物检测方式识别率低、对于多类抛洒物检测效果不佳等问题,提出了一种基于实例分割模型CenterMask优化的道路抛洒物检测算法。首先,使用空洞卷积优化的残差网络ResNet50作为主干神经网络来提取特征并进行多尺度处理;然后,通过距离交并比(DIoU)函数优化的全卷积单阶段(FCOS)目标检测器实现对抛洒物的检测和分类;最后,使用空间注意力引导掩膜作为掩膜分割分支来实现对于目标形态的分割,并采用迁移学习的方式实现模型的训练。实验结果表明,所提算法对于抛洒物目标的检测率为94.82%,相较常见实例分割算法Mask R-CNN,所提的道路抛洒物检测算法在边界框检测上的平均精度(AP)提高了8.10个百分点。 相似文献
15.
针对已有的图像抽象化算法难以反映显著性边缘信息的不足,提出了一个显著性边缘引导下的基于能量优化的图像抽象化算法.对于给定的输入图像,首先基于边缘信息传递策略来提取图像的显著性边缘图,从而有效地减少了不连续边缘的产生;然后,为了在增强显著性边缘的同时抑制杂乱细节信息,根据显著性边缘图来构建图像的期望梯度场;最后,在图像颜色信息和期望梯度场的约束之下,通过能量优化来获得图像的抽象化效果.实验结果表明,本文算法在显著性边缘的连续性保持上表现出明显的优势,具有很好的科学研究价值及实际应用前景. 相似文献
16.
针对染色体图像的人工分割耗时费力且当前自动分割方法精度不佳的问题,基于改进的Mask R-CNN提出了一种染色体图像分割框架——Mask Oriented R-CNN,引入方向信息对染色体图像进行实例分割。首先,新增有向包围框回归分支,以预测紧实包围框并获取方向信息;然后,提出新的交并比(IoU)度量——角度加权交并比(AwIoU),从而结合方向信息与边的关系以改进冗余包围框的判据;最后,实现有向卷积通路结构,通过拷贝掩模分支通路并依据实例的方向信息选择训练路径来减少掩模预测中的干扰。实验结果表明,相较于基准模型Mask R-CNN,Mask Oriented R-CNN在IoU阈值为0.5时的平均精度均值指标提升了10.22个百分点,IoU阈值为0.5~0.95时的平均指标提升了4.91个百分点。研究结果显示,Mask Oriented R-CNN框架相较于基准模型取得了更好的染色体图像分割结果,有助于实现染色体图像自动分割。 相似文献
17.
分形理论是20世纪70年代美国Benoit B.Mandelbrot提出的,在图像压缩领域中得到了迅速的发展与应用,分形编码压缩的两大难点是如何进行图像分割和构造迭代。介于现阶段的分形压缩算法复杂,编码时间长的缺点,本文通过细化图像分割以减轻迭代时计算量的思想,采用串行边界分割与并行区域分割相合的一种改进方法。 相似文献