共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2015,41(4):5903-5908
In this work, WO3-reduced graphene oxide (RGO) nanocomposite was synthesized via a simple one-pot hydrothermal method. The synthesized nanocomposite was characterized by SEM, XRD, EDX, UV–vis spectroscopy, N2 adsorption/desorption, photocurrent response, electrochemical impedance spectroscopy and Raman spectroscopy. The superior contact between WO3 and RGO sheets in the nanocomposite facilitates the photocatalytic degradation of methylene blue and evolution of oxygen. The cause of the enhanced photocatalytic performance could ascribe to the highly facilitated electron transport by the synergistic effect between WO3 and RGO sheets, as well as suppressing the electron hole pair recombination in the nanocomposite. 相似文献
2.
《Ceramics International》2022,48(17):24695-24705
The design and synthesis of high-performance catalytic compounds for the decomposition and removal of wastewater containing hazardous contaminants are substantial for water remediation. Here, we report the efficient preparation of A2Ce2O7 (A = Bi, Dy, and Pr) nanostructures and cerium dioxide nanoparticles utilizing barberry extract as an environmentally friendly reactant and their application as natural-based nanocatalysts to decompose and eliminate hazardous contaminants in an aqueous medium. The features of the produced oxide nanostructures were checked utilizing various techniques. The activity of the fabricated photocatalytic nanostructures was evaluated in the decomposition of Acid Red 14 contaminants under visible light. The outcomes revealed that the kind of trivalent element introduced meaningfully affects the dimension, architecture, optical properties, porosity, and catalytic performance of the ceria sample. Compared to other nanocatalysts, porous Pr2Ce2O7 nanostructures exhibited enhanced photodegradation yield for decomposing Acid Red 14 (99.2%). The porous Pr2Ce2O7 sample also demonstrated stable performance after ten cycles. Photo-generated holes and hydroxyls are the leading species accounting for Acid Red 14 decomposition. Furthermore, the decomposition kinetics of Acid Red 14 followed the pseudo-first-order kinetics. 相似文献
3.
In this work, to improve its dispersion and flame retardancy, graphene oxide (GO) was functionalized by silane coupling agent KH550 and 1-butyl-3-methylimidazole hexafluorophosphate (PF6-ILs), and characteristics of the PF6-ILs@GO was obtained by transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Then, the synergistic flame retardant of GO or PF6-ILs@GO and melamine pyrophosphate (MPP) were applied for epoxy resin (EP) materials. Specifically, the limiting oxygen index (LOI) value of EP with 0.1 wt% PF6-ILs@GO was increased to 29.2% from 27.5% of EP/MPP composites, and the UL-94 test reached the V-0 rating. The CCT results showed that the total heat release (THR) and total smoke release (TSP) of EP/MPP/PF6-ILs@GO composites were significantly 24.4% and 53.4% lower than that of EP/MPP composites. Besides, the thermal behavior investigated by TGA indicated that the char-forming effect of GO and PF6-ILs@GO was great, the residual char of EP/MPP/PF6-ILs@GO composites was as high as 19.5% at 700°C, and its thermal stability was higher than that of EP/MPP composites. On the other hand, the tensile strength of EP/MPP/GO and EP/MPP/PF6-ILs@GO composites were increased by 15.6% and 28.3% compared with EP/MPP composites. According to SEM analysis, the EP/MPP/GO composites formed a good protective char layer, which can effectively improve flame retardancy of EP. This research represents a new method of flame retardant modified GO to improve the flame retardancy and mechanical properties of polymers. 相似文献
4.
《Ceramics International》2019,45(15):18298-18305
Fe3O4-intercalated reduced graphene oxide (Fe3O4-rGO) nanocomposites were synthesized by an in situ reduction process. The results of XRD and XPS analyses suggested the successful formation of a Fe3O4 crystal phase within the rGO sheets. The SEM and TEM images demonstrated that Fe3O4 was flaky and was inserted stably within the rGO layers to form a typical sandwich-like structure. The hysteresis loops revealed the superparamagnetic behavior of the Fe3O4-rGO nanocomposites at room temperature. The electromagnetic parameters revealed that Fe3O4-rGO nanocomposites exhibited multiple dielectric relaxation and magnetic resonance. The reflection loss revealed that the maximum loss was −49.53 dB at 6.32 GHz for a thickness of 3.4 mm while the highest effective absorption bandwidth was 2.96 GHz. 相似文献
5.
《Ceramics International》2021,47(24):34455-34462
Herein, the tungsten trioxide (WO3) nanostructure thin films with different morphologies are firstly fabricated by magnetron sputtering with glancing angle deposition technique (MS-GLAD), followed by the post annealed treatment process in air ambient for 2 h. It is demonstrated that the geometry of MS-GLAD setup, mainly substrate position, played a crucial role in determining the morphology, crystallinity, optical transmittance, and photo-electrochemical (PEC) performance of the WO3 nanostructured thin film. With the different substrate positions in the MS-GLAD system, the WO3 nanorod film layer could be precisely changed to combine an underlying dense layer with a nanorod layer and then nanocolumnar film. Moreover, the prepared samples' chemical composition and work function are studied by X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS), respectively. The combining WO3 nanostructure produced high PEC efficiency compared to the single layer of the WO3 nanorods sample and the dense WO3 thin film sample. Thus, morphology-controlled nanostructure film based on the MS-GLAD technique in our study provides a simple approach to enhance the photo-anode for PEC water splitting application. 相似文献
6.
Erdem Tevfik Ozdemir Serdar Yildirim Berk Ozler Tuncay Dikici Mustafa Erol Metin Yurddaskal 《International Journal of Applied Ceramic Technology》2023,20(6):3775-3785
In this study, manganese ferrite (MnFe2O4) nanoparticles were produced through flame spray pyrolysis (FSP). To investigate the effects of heat treatment, the nanoparticles were annealed between 400 and 650°C for 4 h in air in a comparative manner. The structural, chemical, morphological, and magnetic properties of the nanoparticles were evaluated using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), dynamic light scattering (DLS), and vibrating sample magnetometry (VSM), respectively. The XRD results showed that the nanoparticles synthesized by the FSP method exhibited the MnFe2O4 spinel ferrite structure. The annealing process led to the decomposition of MnFe2O4 into various phases. According to the morphological analysis, the as-synthesized particles were hemispherical–cubic in shape and had an average particle size of less than 100 nm. In addition, the chemical bond structures of the nanoparticles were confirmed in detail by XPS elemental analysis. The highest saturation magnetization was recorded as 33.50 emu/g for the as-produced nanoparticles. The saturation magnetization of the nanoparticles decreased with increasing annealing temperature, while coercivity increased. 相似文献
7.
《Ceramics International》2020,46(13):21248-21255
Nowadays, with the increasing demand for hydrogen, sensors that can detect low concentrations of this gas are essential for its safe use. In this paper, Pd/WO3 film hydrogen sensors are developed using a solid-feed flame vapor deposition (SF-FVD), as an atmospheric, economical, and fast film fabrication method. The crystal structure and morphology of the samples were characterized by different means. The performance of the obtained sensors was investigated for different hydrogen concentrations (1–2500 ppm) and at different operating temperatures (100–250 °C). We attempted to determine the optimum deposition conditions, including feed and substrate to flame nozzle distances. In most of the sensing conditions, the response and recovery times were measured in the order of 20 to 30 s. The layer with a more open morphology showed sensitivity at ppb hydrogen level, good stability, and selectivity. The response behavior of the samples was explained according to the power-law in the metal oxide semiconductor (MOS) gas sensors. 相似文献
8.
9.
《Ceramics International》2023,49(2):1667-1677
Graphene oxide (GO) reinforced Al2O3 ceramic coatings were prepared on the surface of medium carbon steel by plasma spraying. The microstructure of the raw materials and coatings were characterized and analyzed by XPS, XRD, Raman and SEM. The bonding strength of the coatings was studied using a scratch method. The wear resistance of the coatings was assessed by the sliding test. The results showed that, after adding GO, the porosity of the coating reduced by about 31%, the hardness increased by approximately 10%, the bonding strength improved by 250%, and the wear rate reduced by 81% (Load: 30 N) and 84% (Load: 60 N), respectively. 相似文献
10.
Lvlv Gao Cuiping Gu Jingjuan Zhao Xinjie Song Jiarui Huang 《Ceramics International》2019,45(3):3425-3434
Manganese monoxide (MnO) nanowire@reduced graphene oxide (rGO) nanocomposites are synthesized using a simple hydrothermal method combined with a calcination process. The structural and morphological characterization of the composites indicates that the MnO nanowires homogeneously anchor on both sides of the cross-linked rGO. The nanocomposites exhibit a high surface area of 126.5?m2 g?1. When employed as an anode material for lithium-ion batteries, the nanocomposites exhibit a reversible capacity of 1195 mAh g?1 at a current density of 0.1?A?g?1, with a high charge-discharge efficiency of 99.2% after 150 cycles. The three-dimensional architecture of the present materials exhibits high porosity and electron conductivity, significantly shortening the diffusion path of lithium ions and accelerating their reaction with the electrolyte, which greatly improves the lithium-ion storage properties. These excellent electrochemical performances make the composite a promising electrode material for lithium-ion batteries. 相似文献
11.
采用火焰喷雾合成法制备了Sr2+、Cu2+分别取代A、B位的La0.8Sr0.2Mn1-xCuxO3 (x=0,0.1,0.2,0.3,0.4)钙钛矿催化剂,并用于CO催化氧化实验,研究了水蒸气和CO2对催化剂CO氧化活性的影响。对不同取代量La0.8Sr0.2Mn1-xCuxO3 催化剂进行了XRD、SEM、EDS、BET、XPS、H2-TPR和O2-TPD等表征测试。结果表明,火焰喷雾合成法制备的钙钛矿催化剂具有良好的钙钛矿相、疏松多孔结构和催化氧化活性。其中,La0.8Sr0.2Mn0.9Cu0.1O3分别在119.4℃和133.3℃实现50%和90%的CO转化率。掺杂水蒸气和CO2会与CO在催化剂表面形成竞争吸附,导致5种催化剂性能衰减,但La0.8Sr0.2Mn0.9Cu0.1O3仍能在150.2℃实现90%的CO催化转化,在连续稳定性催化氧化测试中,5种催化剂性能衰减不超过10%。结合上述CO催化氧化实验,火焰喷雾合成法制备的催化剂具有良好的稳定性和催化活性,适合制备高CO催化氧化活性的钙钛矿催化剂。 相似文献
12.
Nanoparticles (NPs) of a perovskite-slab-type oxide, La2Ti2O7, were synthesized using LF-FSP coupled with subsequent heat treatments, and their photocatalytic activity was evaluated using decolorization of methyl orange solution under Uv irradiation. The LF-FSP process used metallo-organic precursors to produce NPs with very low agglomeration with average particle sizes (APSs) of 26 nm (LF-FSP NP). Optimized heat treatment of these NPs at 1000°C/3 h/air gave small, plate-like NPs with high crystallinity, and BET specific surface areas (SSAs) of 14 m2/g, that exhibited the best observed photocatalytic activity. High-angle annular dark-field scanning TEM showed that heat-treating eliminates microstructural defects in these NPs, improving photocatalytic activity by ≈30%. The current approach to perovskite-slab-type NPs using LF-FSP provides a simple route to materials with superior photocatalytic activity and offers the advantage of good productivity, 30 g/h. 相似文献
13.
Manel Nourine Moulai Karim Boulkadid Sabri Touidjine Elamine Louafi Hamdane Akbi Hamoud Abdelali Moulay Yahia Zakaria Samir Belkhiri 《Propellants, Explosives, Pyrotechnics》2024,49(5):e202300274
In this investigation, we successfully synthesized a hybrid material, N-rGO@Fe2O3, via a one-step hydrothermal process, comprising nitrogen-doped reduced graphene oxide and α-Fe2O3. Thorough characterization using diverse analytical methods validated its structure. Employing this hybrid composite as a catalyst, we studied its efficacy in the catalytic thermal decomposition of ammonium nitrate (AN). The N-rGO@Fe2O3/AN composite was prepared using a recurrent spray coating method with 3 % mass of the hybrid material. Thermo-gravimetric (TG) and differential scanning calorimetric (DSC) analyses were employed to investigate the catalytic effect. Computational assessment of Arrhenius parameters was conducted through isoconversional kinetic approaches. Results from the kinetic analysis allowed the determination of the critical ignition temperature. Furthermore, calorific values for pure AN and N-rGO@Fe2O3/AN were measured using an oxygen calorimetric bombe, revealing a 41 % reduction in activation energy barrier and a lowering of the critical ignition temperature from 292 °C to 283 °C upon incorporation of the hybrid material. Notably, the surface modification of AN with N-rGO@Fe2O3 resulted in an increase of 1440 J/g in the observed calorific values. These findings highlight the potential of N-rGO@Fe2O3 as an effective catalyst, offering promising implications for applications in enhancing ammonium nitrate thermal decomposition. 相似文献
14.
Graphene oxide (GO ) is reduced and surface functionalized by 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide simultaneously. This functional reduced graphene oxide (F‐rGO ) with better thermal stability can be used as a nano‐filler to improve the flame retardancy, mechanical properties and thermal conductivity of mesogenic epoxy (EO ). Due to the presence of an oriented structure, EO is an intrinsic highly thermal conductive polymer compared with common polymer. After being filled with F‐rGO , the ordered domains in the EO matrix are connected by F‐rGO . As a result, the thermal conductivity coefficient of F‐rGO /EO composite is increased by 30.8% compared with pure EO . The dynamic mechanical analysis results indicate that E ' of F‐rGO /EO is 26.7% higher than that of EO . Because of the stable structure of F‐rGO , F‐rGO /EO is self‐extinguishing. The total heat release of F‐rGO /EO ‐15 is 24.1 kJ g?1, which is 5.6 kJ g?1 lower than that of EO . © 2016 Society of Chemical Industry 相似文献
15.
Yoshiyuki Abe Eongyu Yi Richard M. Laine 《Journal of the European Ceramic Society》2019,39(15):4972-4978
Flame made metal oxide nanopowders enable processing of dense, transparent thin (< 50 μm) films of Ce3+ doped Y3Al5O12 for white light applications. The addition of very small amounts of SiO2 (0.14 wt. %) and the use of a final 95:5 N2:H2 atmosphere sintering step permits nearly complete removal of pores from films originally sintered in O2. Furthermore, the introduction of this final step allows reduction in processing temperatures needed to effect Ce4+ reduction to Ce3+ by several hundred degrees below typical temperatures of >1600 °C. At 20–50 μm, the reported films are also much thinner than previously reported for the same materials normally produced by solid state reactions of micron size powders. Spectrofluorometric measurements of the dense transparent films exhibit excitation spectra centered around 450 nm and broad emission spectra in the 470–750 nm range with two peaks centered at 537 and 570 nm, confirming their applicability as a phosphor for white light emitting diodes. 相似文献
16.
Aluminum hypophosphite/reduced graphene oxide (AHP/RGO) hybrid flame retardant with high thermal stability was successfully prepared by a one‐step method consisting of the simultaneous reduction of graphene oxide and the deposition of AHP on graphene. The as‐prepared sample was characterized by X‐ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and X‐ray photoelectron spectroscopy. The obtained sample was used as a flame retardant for polybutylene terephthalate, and the flame retardancy of the composites was investigated by a limiting oxygen index test, a UL‐94 test, and cone calorimetry. The results showed that AHP/RGO exhibited improved flame retardancy when compared with bare AHP. The addition of AHP/RGO to polybutylene terephthalate led to a significant reduction in the heat release rate and resulted in excellent anti‐dripping properties for the composites. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
17.
To improve the large release of smoke and heat for brominated flame retardants (BFRs) in fire hazard, fullerene (C60) had been introduced in high density polyethylene (HDPE)/bromine flame retardant (Deca/Sb2O3, BFR in short) system in this study. The effects of C60 on the thermal properties, flame retardant properties, rheological behaviors, and smoke release behaviors in HDPE/BFR blends were researched. During polymer thermal degradation, C60 and BFR exhibited the trapping radical ability in condensed phase and gaseous phase, respectively. The intergrated effects of C60 and BFR on the thermal stability and flammability of HDPE were studied by thermo‐gravimetry and cone calorimeter. It was indicated that the introduction of C60 improved the thermal and thermo‐oxidative stability of HDPE/BFR blends. A remarkable advantage of adding C60 was to reduce the peak heat release rate and the average specific extinction area, especially at higher concentration of C60. The analysis of rheological behaviors and pyrolysis products revealed that C60 can capture alkyl radicals, chain radicals, and bromine radicals in the condensed phase, which was in favor of terminating the thermo‐oxidative decomposition and inhibiting the heat and smoke release of HDPE/BFR blends during combustion. 相似文献
18.
Rahnamol Akkalamattam Maitheen Kunju Jayalatha Gopalakrishnan 《Polymer Engineering and Science》2021,61(6):1755-1772
In this work, polyaniline nanorod adsorbed on reduced graphene oxide (P@G) hybrid filler was prepared via in situ polymerization of aniline monomer in the presence of reduced graphene oxide as template. Fourier transform infrared, X-ray diffraction, field emission scanning electron microscopy, and high-resolution transmission electron microscopy images revealed the formation of P@G hybrid. The P@G hybrid was dispersed in dichlorobenzene and then introduced into epoxy resin at different loadings. The epoxy nanocomposites containing 9 wt% P@G hybrids (E/P@G9) exhibited a maximum DC conductivity of 1.34 × 10−5 S/cm that is eight orders higher compared to pure epoxy. At 103 Hz, a dielectric constant (ε′) of 163 was attained for E/P@G9, nearly 34 times higher than pure epoxy. A percolation threshold of 4 vol% was observed for ε′. Dynamic mechanical studies showed that significant enhancement in storage modulus values were exhibited for 3 and 5 wt% of hybrids. The glass transition temperature showed a maximum shift of 10°C to higher temperatures at 3 wt% loading of P@G hybrids (E/P@G3). The tensile strength, Young's modulus, and impact strength of the E/P@G3 nanocomposites enhanced by 19.7, 72, and 12%, respectively. The thermal stability of the epoxy nanocomposites also enhanced with the addition of P@G hybrid. 相似文献
19.
《Ceramics International》2020,46(10):15925-15934
Herein, reduced graphene oxide/cobalt-zinc ferrite (RGO/Co0.5Zn0.5Fe2O4) hybrid nanocomposites were fabricated by a facile hydrothermal strategy. Results revealed that the contents of RGO could affect the micromorphology, electromagnetic parameters and electromagnetic wave absorption properties. As the contents of RGO increased in the as-synthesized hybrid nanocomposites, the dispersibility of the particles was improved. Meanwhile, numerously ferromagnetic Co0.5Zn0.5Fe2O4 particles were evenly anchored on the wrinkled surfaces of flaky RGO. Besides, the obtained hybrid nanocomposites exhibited superior electromagnetic absorption in both X and Ku bands, which was achieved by adjusting the RGO contents and matching thicknesses. Significantly, when the content of RGO was 7.4 wt%, the binary nanocomposites showed the optimal reflection loss of -73.9 dB at a thickness of 2.2 mm and broadest effective absorption bandwidth of 6.0 GHz (12.0–18.0 GHz) at a thin thickness of merely 2.0 mm. The enhanced electromagnetic absorption performance was primarily attributed to the multiple polarization effects, improved conduction loss caused by electron migration, and magnetic loss derived from ferromagnetic Co0.5Zn0.5Fe2O4 nanoparticles. Our results could provide inspiration for manufacturing graphene-based hybrid nanocomposites as high-efficient electromagnetic wave absorbers. 相似文献
20.
《Ceramics International》2020,46(1):444-451
In this work, the synthesis of tungsten oxide/reduced graphene oxide (WO3-rGO) nanocomposite, using a simple method of pulsed laser ablation in liquids (PLAL) is reported. The pulsed laser beam of 355 nm wavelength carries out two simultaneous processes: the reduction of graphene oxide and at the same time the anchoring of nanostructured WO3 on reduced graphene oxide. In the photo-catalytic application, WO3-rGO shows much better visible light absorption and less photo-generated charge recombination than pure WO3, as indicated by optical absorption and photoluminescence spectra. These improved features in WO3-rGO significantly enhanced the photo-catalytic decontamination of methylene blue (MB) dye in the water, compared to the use of pure WO3 as a photocatalyst. A Poly 2-acrylamido-2-methyl-1-propanesulfonic acid (PAMPS) based electrolyte together with the high electrical conductance and porosity of rGO which were produced after anchoring WO3 on the graphene oxide, were harnessed for the energy storage application using this material for a supercapacitor. The specific capacitance for WO3-rGO based device is achieved to be 577 F g−1 measured by the galvanostatic charge-discharge (GCD) method. Also, at a power density of 1000 W kg−1, the as-synthesized WO3-rGO demonstrated a large energy density value of 76.3 Wh Kg−1 that is much larger than obtained, using WO3 alone. Besides these photocatalytic and energy storage performance evaluation of WO3-rGO, the optical, morphological and elemental characteristics of synthesized WO3-rGO were also investigated to study the improved performance of the nanocomposite in these two applications. 相似文献