首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2017,43(11):8525-8530
Commercial Y2O3 powder was used to fabricate Y2O3 ceramics sintered at 1600 °C and 1800 °C with concurrent addition of ZrO2 and La2O3 as sintering aids. One group with different contents of La2O3 (0–10 mol%) with a fixed amount of 1 mol% ZrO2 and another group with various contents of ZrO2 (0–7 mol%) with a fixed amount of 10 mol% La2O3 were compared to investigate the effects of co-doping on the microstructural and optical properties of Y2O3 ceramics. At low sintering temperature of 1600 °C, the sample single doped with 10 mol% La2O3 exhibits much denser microstructure with a few small intragranular pores while the samples with ZrO2 and La2O3 co-doping features a lot of large intergranular pores leading to lower density. When the sintering temperature increases to 1800 °C, samples using composite sintering aids exhibit finer microstructures and better optical properties than those of both ZrO2 and La2O3 single-doped samples. It was proved that the grain growth suppression caused by ZrO2 overwhelms the acceleration by La2O3. Meanwhile, 1 mol% ZrO2 acts as a very important inflection point with regard to the influence of additive concentration on the transmittance, pore structure and grain size. The highest in-line transmittance of Y2O3 ceramic (1.2 mm in thickness) with 3 mol% of ZrO2 and 10 mol% of La2O3 sintered at 1800 °C for 16 h is 81.9% at a wavelength of 1100 nm, with an average grain size of 11.2 µm.  相似文献   

2.
《Ceramics International》2016,42(15):16640-16643
Transparent Y2O3 ceramics were fabricated by the solid-state reaction and vacuum sintering method using La2O3, ZrO2 and Al2O3 as sintering aids. The microstructure of the Y2O3 ceramics sintered from 1550 °C to 1800 °C for 8 h were analyzed by SEM. The sintering process of the Y2O3 transparent ceramics was optimized. The results showed that when the samples were sintered at 1800 °C for 8 h under vacuum, the average grain sizes of the ceramics were about 3.5 µm. Furthermore, the transmittance of Y2O3 ceramic sintered at 1800 °C for 8 h was 82.1% at the wavelength around the 1100 nm (1 mm thickness), which was close to its theoretical value. Moreover, the refractive index of the Y2O3 transparent ceramic in the temperature range from 30 °C to 400 °C were measured by the spectroscopic ellipsometry method.  相似文献   

3.
Commercial Y2O3 powder was used to fabricate highly transparent Y2O3 ceramics with the addition of ZrO2 via slip casting and vacuum sintering. The effects of ZrO2 addition on the transparency, grain size and lattice parameter of Y2O3 ceramics were studied. With addition of ZrO2 the transparency of Y2O3 ceramics increased markedly and the grain size of Y2O3 ceramics decreased markedly by cation diffusivity mechanism and the lattice parameter of Y2O3 ceramics slightly decreased. The highest transmittance (at wavelength 1100 nm) of the 5.0 mol% ZrO2–Y2O3 ceramic (1.0 mm thick) sintered at 1860 °C for 8 h reached 81.7%, very close to the theoretical value of Y2O3.  相似文献   

4.
Highly transparent Yb3+:Y2O3 ceramics with doping concentration up to 40.0 at.% had been fabricated successfully via hydrogen atmosphere sintering, where the raw powders were synthesized by co-precipitation method. The sintering temperature is about 600 °C lower than its melting temperature. SEM investigation revealed the average grain size of Yb3+:Y2O3 ceramics sintered at 1850 °C for 9 h was about 7 μm. The highest transmittance of as-prepared 1 mm thickness samples around wavelength of 1050 nm reached 80%, which is close to the theoretical value of Y2O3. The optical spectroscopic properties of Yb3+:Y2O3 transparent ceramics have also been investigated, which shows that it is a very good laser material for diode laser pumping and short pulse mode-locked laser.  相似文献   

5.
Tb3+/Yb3+ co-doped Y2O3 transparent ceramics were fabricated by vacuum sintering of the pellets (prepared from nanopowders by uniaxial pressing) at 1750 °C for 5 h. Zr4+ and La3+ ions were incorporated in Tb3+/Yb3+ co-doped Y2O3 nanoparticle to reduce the formation of pores which limits the transparency of ceramic. An optical transmittance of ∼80% was achieved in ∼450 to 2000 nm range for 1 mm thick pellet which is very close to the theoretical value by taking account of Fresnel’s correction. High intensity luminescence peak at 543 nm (green) was observed in these transparent ceramics under 976 and 929 nm excitations due to Yb–Tb energy transfer upconversion.  相似文献   

6.
《Ceramics International》2015,41(7):8755-8760
0–0.7 at% Cr:Y2O3 transparent ceramics were prepared by vacuum sintering. The optimum in-line transmittance in the visible and near infrared region is 78%, and the Vickers hardness of the sintered 0.1 at% Cr:Y2O3 is 10.1 GPa, respectively. The mechanism of Cr-doped and the optical properties has been discussed. The results indicated that the Cr:Y2O3 transparent ceramic is a promising laser material with enhanced mechanical property.  相似文献   

7.
《Ceramics International》2017,43(15):12057-12060
Transparent Sm:Y2O3 ceramics were fabricated by spark plasma sintering (SPS). The effects of LiF additive and sintering temperature on the microstructure and optical transmittance of the Sm:Y2O3 ceramics were investigated. The optimal content of LiF additive and sintering temperature was found to be 0.3 wt% and 1500 ℃. The transmittance of Sm:Y2O3 ceramics with a thickness of 1.7 mm reached 75.3% at 609 nm, which is about 94% of the theoretical value. The average grain size of the sample was about 50 µm.  相似文献   

8.
《Ceramics International》2016,42(7):7962-7967
Y2O3 ceramics with good dielectric properties were prepared via co-precipitation reaction and subsequent sintering in a muffle furnace. The effects of Nd doping and sintering temperature on microwave dielectric properties were studied. With the increase in sintering temperature, the density, quality factor (Q×f), and dielectric constant (εr) values of pure Y2O3 ceramics increased to the maximum and then gradually decreased. The Y2O3 ceramics sintered at 1500 °C for 4 h showed optimal dielectric properties: εr=10.76, Q×f=82, 188 GHz, and τf=−54.4 ppm/°C. With the addition of Nd dopant, the Q×f values, εr, and τf of the Nd: Y2O3 ceramics apparently increased, but excessive amount degraded the quality factor. The Y2O3 ceramics with 2 at% Nd2O3 sintered at 1460 °C displayed good microwave dielectric properties: εr=10.4, Q×f=94, 149 GHz and τf=−46.2 ppm/°C.  相似文献   

9.
《Ceramics International》2016,42(3):4238-4245
High optical quality Y2O3 transparent ceramics with fine grain size were successfully fabricated by air pre-sintering at various temperature ranging from 1500 to 1600 °C combined with a post-hot-isostatic pressing (HIP) treatment using co-precipitated powders as the starting material. The fully dense Y2O3 transparent ceramic with highest transparency was obtained by pre-sintered at 1550 °C for 4 h in air and post-HIPed at 1600 °C for 3 h (the pressure of HIP 200 MPa), and it had fine microstructure and the average grain size was 0.96 μm. In addition, the in-line transmittance of the ceramic reached 81.7% at 1064 nm (1 mm thickness). By this approach, the transparent Y2O3 ceramics with fine grain size (<1.6 μm) were elaborated without any sintering aid.  相似文献   

10.
High transparency Nd: Y2O3 ceramics were prepared by vacuum sintering with La2O3 and ZrO2 sintering additives. The optimum in‐line transmittance of the sintered Nd: Y2O3 is 80.98% at the wavelength of 1100 nm, for which the content of La2O3 and ZrO2 are 10.0 and 3.0 at.%, respectively. This specimen demonstrates homogeneous microstructure with the average grain size of 8.3 μm. The mechanism of sintering with La2O3 and ZrO2 aids and the optical properties was discussed. The absorption, emission cross section, and fluorescence lifetime have been estimated as 1.62 × 10?20 cm2, 5.13 × 10?20 cm2, and 232 μs, respectively. Vickers hardness and the fracture toughness were measured of 9.18 GPa and 1.03 Mpa·m1/2, respectively. All the results indicate that Nd: Y2O3 transparent ceramic is a promising candidate for laser material.  相似文献   

11.
《Ceramics International》2021,47(20):28859-28865
Highly transparent polycrystalline Tm2O3 ceramics were successfully fabricated by vacuum sintering at temperatures from 1650 to 1850 °C for 8 h using commercial Tm2O3 and ZrO2 (1 at%) powders as starting materials. It is the first time that ZrO2 was reported as a sintering additive to prepare Tm2O3 transparent ceramics. The effects of sintering temperature on the optical transmittance and microstructure of Tm2O3 transparent ceramics were studied. The desired Tm2O3 ceramics with relative density of 99.8% and an average grain size of approximately 9.7 μm were obtained at 1800 °C and the in-line transmittance reached 75% at 880 nm and fluctuated around 80% from 2100 to 2400 nm, respectively. This study demonstrated that Tm2O3 transparent ceramics with higher in-line transmittance and smaller grain size could be prepared by using ZrO2 as sintering additive at a relatively lower vacuum sintering temperature compared to those already reported in open literatures.  相似文献   

12.
Transparent Y2O3 ceramics were fabricated by solid-state reaction using high purity Y2O3 and ZrO2 powder as starting material. The results indicated that ZrO2 additive can improve the transparency of Y2O3 ceramic greatly. The best transmittance appears with 3 at.% ZrO2 doped Y2O3 transparent ceramic with transmittance at 1100 nm of 83.1%, which is up to 98.6% of the theoretical value. The microstructure is uniform and no secondary phase is observed in the ceramic with the average grain size of 15 μm. The mechanism of ZrO2 improving the transparency of Y2O3 ceramic is analyzed in detail. On this basis, Yb3+ doped Y2O3 transparent ceramic was also fabricated and spectroscopic properties were investigated.  相似文献   

13.
Optical transparent polycrystalline ZrO2 ceramics were fabricated by solid-state sintering process using first vacuum sintering followed by hot isostatic pressing. In the visible wavelength range (400–800 nm), the in-line transmittance of 5.6-mm thick samples reaches 68% at exemplary wavelength 600 nm (corresponding to an in-line absorbance based on 10 of A10 = 0.08 cm?1), which is approximately 90% of theoretical limit. The refractive indices of the ZrO2 optoceramics at 630 nm (nd) are varying between 2.10 and 2.20, depending on TiO2 contents, the latter being used as sintering aid. The appearance of birefringence is strongly correlated to the addition of TiO2 as sintering additive in the ceramic samples, whereas addition of TiO2 and simultaneous increase in Y2O3 content resulted in a decrease of birefringence.  相似文献   

14.
《Ceramics International》2016,42(15):17081-17088
Commercial Y2O3 nanopowder was used to fabricate transparent Y2O3 ceramics by spark plasma sintering under the pressure of 100 MPa for 20 min with the heating rate of 100 °C/min. The microstructures, mechanical and optical properties of the Y2O3 ceramics sintered at different temperatures were investigated in detail. Densification occurred up to a sintering temperature of 1500 °C, and above 1500 °C, rapid grain growth and pore growth occurred. The highest relative density of 99.58% and the minimum average grain size of 0.58±0.11 µm were obtained at 1500 °C. The flexural strength, hardness and fracture toughness of the optimal spark plasma sintered Y2O3 ceramic were 122 MPa, 7.60 GPa and 2.06 MPa.m1/2, respectively. The Y2O3 ceramic sintered at 1500 °C had the in-line transmission of about 11–54% and 80% in the wavelength range of 400–800 nm and 3–5 µm, respectively.  相似文献   

15.
We report on how the mechanical properties of sintered ceramics (i.e., a random mixture of equiaxed grains) with the Al2O3–Y2O3–ZrO2 eutectic composition compare with those of rapidly or directionally solidified Al2O3–Y2O3–ZrO2 eutectic melts. Ceramic microcomposites with the Al2O3–Y2O3–ZrO2 eutectic composition were fabricated by sintering in air at 1400–1500 °C, or hot pressing at 1300–1400 °C. Fully dense, three phase composites of Al2O3, Y2O3-stabilized ZrO2 and YAG with grain sizes ranging from 0.4 to 0.8 μm were obtained. The grain size of the three phases was controlled by the size of the initial powders. Annealing at 1500 °C for 96 h resulted in grain sizes of 0.5–1.8 μm. The finest scale microcomposite had a maximum hardness of 19 GPa and a four-point bend strength of 282 MPa. The fracture toughness, as determined by Vickers indentation and indented four-point bending methods, ranged from 2.3 to 4.7 MPa m1/2. Although strengths and fracture toughnesses are lower than some directionally or rapidly solidified eutectic composites, the intergranular fracture patterns in the sintered ceramic suggest that ceramic microcomposites have the potential to be tailored to yield stronger, tougher composites that may be comparable with melt solidified eutectic composites.  相似文献   

16.
《Ceramics International》2016,42(12):13812-13818
Terbium doped yttrium aluminum garnet (Tb:YAG) transparent ceramics with different doping concentrations were fabricated by the solid-state reaction method using commercial Y2O3, α-Al2O3 and Tb4O7 powders as raw materials. Samples sintered at 1750 °C for 20 h were utilized to observe the optical transmittance, microstructure and fluorescence characteristics. It is found that all the Tb: YAG ceramics with different doping concentrations exhibit homogeneous structures with grain size distributions around 22–29 µm. For the 5 at% Tb:YAG transparent ceramics, the grain boundaries are clean with no secondary phases. The photoluminescence spectra show that Tb:YAG ceramics emit predominantly at 544 nm originated from the energy levels transition of 5D47F5 of Tb3+ ions, and the intensity of the emission peak reaches a maximum value when the Tb3+ concentration is 5 at%. The in-line transmittance of the 5 at% Tb:YAG ceramics is 73.4% at the wavelength of 544 nm, which needs to be further enhanced by optimizing the fabrication process. We think that Tb:YAG transparent ceramics may have potential applications in the high-power white LEDs.  相似文献   

17.
The phase diagram of the Al2O3–ZrO2–La2O3 system was constructed in the temperature range 1250–2800 °C. The liquidus surface of the phase diagram reflects the preferentially eutectic interaction in the system. Three new ternary and two new binary eutectics were found. The minimum melting temperature is 1665 °C and it corresponds to the ternary eutectic LaAlO3 + T-ZrO2 +  La2O3·11Al2O3. The solidus surface projection and the schematic of the alloy crystallization path confirm the preferentially congruent character of phase interaction in the ternary system. The polythermal sections present the complete phase diagram of the Al2O3–ZrO2–La2O3 system. No ternary compounds or regions of remarkable solid solution were found in the components or binaries in this ternary system. The latter fact is the theoretical basis for creating new composite ceramics with favorable properties in the Al2O3–ZrO2–La2O3 system.  相似文献   

18.
Fully densified B6O materials with Al2O3/Y2O3 sintering additives amounts systematically varied between 0 and 15 vol.% and Al2O3/(Al2O3 + Y2O3) molar ratios of 0.05–1 were prepared by FAST/SPS and HIP at sintering temperatures between 1725 °C and 1900 °C. Their densification and microstructure were correlated with measured mechanical properties. The addition of low additive amounts in the range of 2–3 vol.% was found to increase the fracture toughness and strength from 2.0 MPa m1/2 (SEVNB) and 420 MPa for pure B6O to about 3.0 MPa m1/2 and 540 MPa, but it had no effect on the hardness, which remained at a high level of 30–36 GPa (HV0.4). Higher additive contents did not yield a further improvement in the toughness but resulted in a reduction in hardness and strength.  相似文献   

19.
The phase assembly of 1.0–5.0 mol% Nd2O3-doped ZrO2 sintered at 1400 °C revealed that the tetragonal ZrO2 phase could not be completely stabilised. Co-stabilising of 0.5–2.5 mol% Nd2O3 with 0.5–1.0 mol% Y2O3, however, allowed the preparation of fully dense (Nd,Y)-TZP ceramics by pressureless sintering in air at 1450 °C. The mixed stabiliser monoclinic zirconia nanopowder starting material was synthesized from a suspension of neodymium nitrate, yttrium nitrate and monoclinic zirconia powder in an alcohol/water mixture. A HV30 hardness of 10 GPa combined with an excellent indentation toughness of 13 MPa m1/2 could be achieved for the (1.0Nd,1.0Y)- and (1.5Nd,1.0Y)-TZP ceramics. The influence of the mixed stabiliser content on the phase stability and mechanical properties are investigated and discussed.  相似文献   

20.
Ultra-highly transparent ZrO2-doped Yb3+: Y2O3 ceramics were prepared by slip casting and vacuum pressureless sintering and the transmittance reached the highest value of 80.9% for the sample doped with 8.0 at% Yb3+. There are three main absorption peaks at 905, 950, and 976 nm, corresponding to the transition from the lowest level of field splitting of 2F7/2 crystal to every splitting energy levels of 2F5/2 crystal field. We analyzed the absorption and emission spectra of transparent Yb3+: Y2O3 from the energy level structure of Yb3+, and the transmission, absorption, and emission spectra were systematically studied. There are three main absorption peaks at 905, 950, and 976 nm and four emission peaks at 1076, 1031, 1013, and 977 nm, respectively. The emission peaks at 977 and 1013 nm broaden and vanish for 8.0 and 10.0 at% Yb3+-doped Y2O3, which may be related to the change of Y2O3 crystal field caused by high concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号