首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MgO–C refractories with different carbon contents have been developed to meet the requirement of steel-making technologies. Actually, the carbon content in the refractories will affect their microstructure. In the present work, the phase compositions and microstructure of low carbon MgO–C refractories (1 wt% graphite) were investigated in comparison with those of 10 wt% and 20 wt% graphite, respectively. The results showed that Al4C3 whiskers and MgAl2O4 particles formed for all the specimens fired at 1000 °C. With the temperature up to 1400 °C, more MgAl2O4 particles were detected in the matrix and AlN whiskers occurred locally for high carbon MgO–C specimens (10 wt% and 20 wt% graphite). However, the hollow MgO-rich spinel whiskers began to form locally at 1200 °C and grew dramatically at 1400 °C in low carbon MgO–C refractories, whose growth mechanism was dominated by the capillary transportation from liquid Al at these temperatures.  相似文献   

2.
《Ceramics International》2017,43(6):5014-5019
MgAl2O4nanoparticles were added to MgO–CaO refractory ceramic composites in the range of 0–8 wt%. Refractory specimens were obtained by sintering at 1650 °C for 3 h in an electric furnace. Refractory specimens were characterized by measurements of bulk density, apparent porosity, hydration resistance, cold crushing strength, crystalline phase formation, and microstructural analysis. Results show that with additions of MgAl2O4 nanoparticles the bulk density of the samples increased. But the apparent porosity and cold crushing strength decreased and increased, respectively with addition MgAl2O4 nanoparticles up to 6 wt% and for further MgAl2O4 nanoparticles, due to the thermal expansion mismatch, the results is reversed. Also, the hydration resistance of the samples was appreciably improved by the addition of MgAl2O4 nanoparticles due to its effect on decreasing the amount of free CaO in the refractory composite and promotion of densification by creating a dense microstructure.  相似文献   

3.
《Ceramics International》2017,43(8):5914-5919
Using analytically pure MgO, analytically pure Al2O3 and analytically pure ZrO2 as raw materials, Mg4.68Al2.64Zr1.68O12 was prepared at 1993 K for 10 h, and then, a MgO-MgAl2O4-ZrO2 composite with a continuous network was successfully obtained by controlling the cooling rate based on the in-situ decomposition reaction of Mg4.68Al2.64Zr1.68O12 at temperatures below 1887 K. The three phases of MgO, MgAl2O4 and ZrO2 are highly dispersed in this continuous network microstructure, with ZrO2 intertwined by MgO and MgAl2O4 and micropores with a size of less than 2 µm. Furthermore, the synthesis mechanism of Mg4.68Al2.64Zr1.68O12 is given as follows: first, MgAl2O4 is synthesized using the reaction: MgO(s)+Al2O3(s)=MgAl2O4(s) at temperatures below 1894 K; and then, Mg4.68Al2.64Zr1.68O12 is further prepared through MgO and ZrO2 diffusion and dissolution into MgAl2O4 at temperatures above 1894 K, for example, at 1923 K or 1993 K in this work.  相似文献   

4.
《Ceramics International》2017,43(9):6891-6897
Transparent magnesium aluminate spinel (MgAl2O4) ceramics were fabricated by hot-pressing of the MgO and α-Al2O3 powder mixture using LiF as a sintering aid. Effects of the LiF additive on densification, microstructure and optical properties of MgAl2O4 ceramics were systematically investigated. It has been found that the addition of LiF can effectively remove the porosity and increase the optical transparency of MgAl2O4 ceramics. For the spinel ceramics HP-ed at 1550 °C for 3 h with 1 wt% LiF addition, the average grain size is about 36 µm and the in-line transmittance exceeds 60% at the wavelength of 800 nm.  相似文献   

5.
MgAl2O4/MgO eutectic fibers and rods have been grown successfully by the micro-pulling-down method, and the microstructures and optical characterizations of grown crystals were performed. MgAl2O4/MgO eutectic fibers of 0.3–1 mm in diameter and about 500 mm in length, and the rods having 5 mm in diameter with approximately 60 mm in length have been grown with the 6–120 mm/h of growth speed. The eutectic fibers showed homogeneous microstructure in which MgO fiber/whisker aligned to the growth direction in the MgAl2O4 (spinel) matrix. The grown crystals looked semitransparence under naked eyes. Optical and orientational characterizations were performed. The second phase of MgO was easily removed by selective etching with hydrochloric acid, and then porous single crystalline bodies were obtained.  相似文献   

6.
Magnesium aluminate spinel oxides have been prepared via poly(N-isopropylacrylamide) assisted microwave technique. The prepared MgAl2O4 powders showed a crystalline cubic structure with spinel phase after calcination at 600 °C only. The poly(N-isopropylacrylamide) amount showed a high effect on the crystallite size and the densification behavior of MgAl2O4. The increase of the amount of poly(N-isopropylacrylamide) reduced the sintering temperature of MgAl2O4 from 1400 °C to 1050 °C. The hot-pressed of MgAl2O4 powders in the presence of 3 wt% of poly(N-isopropylacrylamide) exhibited a full density at sintering temperature 1100 °C in 15 min only. The sintered films showed high transparency (81 ± 2%) in the wavelength range 500–1000 nm.  相似文献   

7.
《Ceramics International》2016,42(7):8079-8084
The directionally solidified Al2O3/MgAl2O4/ZrO2 ternary eutectic ceramic was prepared via induction heating zone melting. Smooth Al2O3/MgAl2O4/ZrO2 eutectic ceramic rods with diameters of 10 mm were successfully obtained. The results demonstrate that the eutectic rods consist of Al2O3, MgAl2O4 and ZrO2 phases. In the eutectic microstructure, the MgAl2O4 and Al2O3 phases form the matrix, the ZrO2 phase with a fibre or shuttle shape is embedded in the matrix, and a quasi-regular eutectic microstructure formed, presenting a typical in situ composite pattern. During the eutectic growth, the ZrO2 phase grew on non-faceted phases ahead of the matrix growing on the faceted phase. The hardness and fracture toughness of the eutectic ceramics reached 12 GPa and 6.1 MPa·m 1/2, respectively, i.e., two times and 1.7 times the values of the pre-sintered ceramic, respectively. In addition, the ZrO2 phase in the matrix reinforced the matrix, acting as crystal whiskers to reinforce the sintered ceramic.  相似文献   

8.
Reaction sintering of MgO and Al2O3 with addition of LiF as sintering additive was used to prepare MgAl2O4 spinel ceramic by hot pressing. The process parameter (temperature, pressure, dwell time), the stoichiometric ratio of MgO to Al2O3 and the selection of the alumina raw powder are equally important for highest transparency of the spinel ceramic. With this optimization highest transparency of 86% in the visible range at λ = 640 nm together with UV transmission of 62% at 200 nm for spinel ceramic with 4 mm thickness was reached.  相似文献   

9.
《Ceramics International》2016,42(15):16552-16556
The effect of MgO/La2O3 additives on phase composition, microstructures, sintering behavior, and microwave dielectric properties of 0.7(Sr0.01Ca0.99)TiO3−0.3(Sm0.75Nd0.25)AlO3 (7SCT-3SNA) ceramics prepared via conventional solid-state route were systematically investigated. MgO/La2O3 as additives showed no obvious influence on the phase composition of the 7SCT-3SNA ceramics and all the samples exhibited pure perovskite structures. The presence of MgO/La2O3 additives effectively reduced the sintering temperature of 7SCT-3SNA ceramics due to the formation of a liquid phase at a relatively low temperature during sintering progress. The 0.5 wt% MgO doped 7SCT-3SNA sample with 0.5 wt% of La2O3, sintered at 1320 °C for 4 h, was measured to show superior microwave dielectric properties, with an εr of 45.57, a Q×f value of 46205 GHz (at 5.5 GHz), and τf value of −0.32 ppm/°C, which showed dense and uniform microstructure as well as well-developed grain growth.  相似文献   

10.
Magnesia-graphite refractory materials are used in large quantities in the steelmaking process. The chemical characterization of this type of refractories is an arduous task that requires a rigorous set of laboratory tests and analyses. In the present paper, proper characterization of magnesia-graphite refractories has been approached by X-ray powder diffraction combined with Rietveld methodology. The quantitative phase analysis of a MgO-graphite refractory has been 68.3 wt% of MgO, 8.1 wt% of graphite, 13.5 wt% of Al2O3, 4.4 wt% of SiC, 0.6 wt% of Si, 1.2 wt% of Al, 1.5 wt% of AlPO4 and 2.4 wt% of silicone. These results have been checked and validated with those obtained by other analysis procedures used to determine the crystalline and non-crystalline phases present in these materials.  相似文献   

11.
《Ceramics International》2017,43(10):7674-7681
In the current study, the wettability between Fe-Al alloy and sintered MgO substrate was investigated. The stable contact angle between the sintered MgO substrate and the liquid iron was approximately 134° at 1550 °C, hardly influenced by Al concentrations of 18 ppm and 370 ppm in the liquid iron. By changing hydrogen partial pressure from 0 vol% to 1 vol%, the oxygen partial pressure decreased. Meanwhile, the contact angle between the MgO substrate and the liquid iron with 370 ppm Al increased with the decrease of oxygen partial pressure. The oxygen partial pressure and contact angle were scarcely affected by increasing hydrogen partial pressure from 1 vol% to 5 vol%. In all cases with 370 ppm Al in the liquid iron, oxide layers were detected on the surface of iron samples. The oxidation of iron could be effectively prevented by increasing the hydrogen partial pressure. The MgO substrate was reduced to Mg vapor in the reducing atmosphere at a high temperature. Then the Mg vapor was dissolved into the iron even before iron melting. Under thermodynamic equilibrium condition, an oxide layer containing two components, i.e. MgO·Al2O3 phase and CaO-SiO2-MgO-Al2O3 phase, was generated on the surface of the iron sample. Due to the different wettability between the iron and the two phases, MgO·Al2O3 phase was repelled, while the CaO-SiO2-MgO-Al2O3 phase adhered to the inside area.  相似文献   

12.
The experiment was carried out to produce fine-grained ceramics with a grain size of less than 5 μm. Ultradispersed oxide mixture MgO–Al2O3 (weight ratio MgO/Al2O3 value was 3/97) and solid solution Ce0.09Zr0.91O2?δ were used as initial nanopowders with a crystallite size less than 10 nm. Dilatometric investigation was carried out at the temperature interval 1100–1550 °C using three temperature modes, included various heating and cooling rates and isothermal plots. Initial metal oxide powders were obtained by modified sol–gel technique using N-containing organic compounds for sol stabilization. It was shown that the role of MgO in nanopowdery composition for sintering is to accelerate the sintering due to the formation of the liquid phase with spinel MgAl6O10. It was determined, that the presence of interim isotherms on the temperature rise curves does not impact the rate and quality of sintering.  相似文献   

13.
《Ceramics International》2017,43(17):15246-15253
MgAl2O4 nanoparticles (NPs) were prepared by sol–gel method using aluminium nitrate, magnesium nitrate and citric acid as starting materials, phenolic formaldehyde resin and carbon black as additives. Growth of MgAl2O4 NPs in different heat treatment conditions (temperature, atmosphere, carbon additives and in Al2O3-C system) was investigated. MgAl2O4 NPs were formed at 600 °C in air atmosphere with serious agglomeration of nanoparticles having diameter of approximate 30 nm. The size of MgAl2O4 NPs increased greatly from 40 to 50 nm to several hundreds of nanometres as the temperature was raised from 800 °C to 1400 °C. Partial sintering of NPs was observed upon heating at temperatures higher than 1200 °C in air. In reducing atmosphere, the size of MgAl2O4 NPs (about 30–50 nm) changed slightly with increasing temperature. This was attributed to the dispersion of carbon inclusions in the MgAl2O4 grain boundaries, inducing a steric hindrance effect and inhibiting the growth of particles. MgAl2O4 NPs (30–50 nm) in the Al2O3-C system were in-situ formed at high temperatures with the use of dried precursor gels. MgAl2O4 NPs can contribute to improving the thermal shock resistance of Al2O3-C materials.  相似文献   

14.
《Ceramics International》2016,42(12):13547-13554
Cordierite-spodumene composite ceramics with 5, 10, 15 wt% spodumene used for solar heat transmission pipeline were in-situ prepared via pressureless sintering from kaolin, talc, γ-Al2O3 and spodumene. Effects of spodumene on densification, mechanical properties, thermal shock resistance, phase composition and microstructure of the composite ceramics were investigated. The results showed that spodumene used as flux material decreased the sintering temperature greatly by 40–80 °C, and improved densification and mechanical properties of the composite ceramics. Especially, sample A3 with 10 wt% spodumene additive sintered at 1380 °C exhibited the best bending strength and thermal shock resistance. The bending strengths of A3 before and after 30 thermal shock cycles (wind cooling from 1100 °C to room temperature) were 102.88 MPa and 96.29 MPa, respectively. XRD analysis indicated that the main phases of the samples before 30 thermal shock cycles were α-cordierite, α-quartz and MgAl2O4, and plenty of β-spodumene appeared after thermal shock. SEM micrographs illustrated that the submicron β-spodumene grains generated at the grain boundaries after thermal shock improved the thermal shock resistance. It is believed that the cordierite-spodumene composite ceramics can be a promising candidate material for heat transmission pipeline in the solar thermal power generation.  相似文献   

15.
The influence of MgAl2O4 spinel addition as a ceramic bonding in the MgO–CaZrO3 refractory was established by the evaluation of physical and microstructural characteristics in terms of density, porosity, crystalline phases, phase distribution and morphology. X-ray diffraction analyses and scanning electron microscopy with microanalysis have been used. The mechanical behavior has been evaluated in terms of cold crushing strength at room temperature and modulus of rupture at 25 and 1260 °C. Static and dynamic resistances tested by chemical attack of clinker raw constituents have been carried out at 1450 °C. Results showed that thermo-mechanical properties significantly improved with increasing the content of spinel. Microstructural analysis revealed that spinel phase aided to develop a strong bond between MgO and CaZrO3 refractory aggregates. Finally, the refractory bodies exhibited a good thermal stability and an excellent chemical resistance against the clinker raw material.  相似文献   

16.
In this work, the effect of Cr2O3 as a nucleating agent, in iron rich glasses has been investigated by means of DTA, XRD and density measurements. By Cr2O3 addition, from 0·4 to 1·0 wt%, a lowering of the crystallisation peak temperature resulted in the DTA trace, the maximum effect corresponding to 0·7 wt%. By evaluating the degree of crystallisation of the glass at 0·7 wt% Cr2O3, the highest efficiency in the nucleation process also corresponds. The optimum values for the nucleation and crystallisation time and temperature, determined for 0·7 wt% Cr2O3 addition, have been 70 min at 630°C and 30  min at 800°C. The crystalline phases formed at different thermal treatment temperatures of the parent glass have been investigated by XRD; the spinel is the only phase after the nucleation; pyroxene is the major phase after the crystallisation. The results of this study have highlighted that a small percentage of Cr2O3 strongly affects the spinel formation thereby reducing the time and temperature of the thermal treatment and enhancing the degree of crystallisation of high iron content glasses. ©  相似文献   

17.
The effects of Li2CO3–Bi2O3 (LB) additive on the microstructure, phase formation, microwave dielectric properties and applicability for low-temperature co-fired ceramics (LTCC) technology of (Ca0.9Mg0.1)SiO3 (CMS) ceramics were investigated. The sintering temperature of the CMS ceramics was reduced from 1290 °C to 890 °C by the addition of LB. Secondary phases SiO2 and Bi4(SiO4)3 were detected when LB content was less than 9 wt%. Low melting point liquid phases were formed when LB content was 11–14 wt%. The Qf value initially increased with the addition of LB and attained the maximum value for the 9 wt% LB-doped CMS ceramic. When the LB content exceeded 9 wt%, the Qf value decreased because of the presence of liquid phase and abnormal growth of grains. ?r of 6.92, Qf of 27,600 GHz and τf of ?43.6 ppm/°C were obtained for 9 wt% LB-doped CMS ceramics sintered at 890 °C for 2 h. Also the ceramics can be well co-fired with Ag electrode.  相似文献   

18.
《Ceramics International》2016,42(11):13011-13017
H3BO3 was added during the preparation of Sr2MgAl22O36:Mn4+ phosphors by a high-temperature solid-state reaction method. The influence of H3BO3 flux on the crystal structure, particle morphology and photoluminescence properties of the Sr2MgAl22O36:Mn4+ phosphors was investigated by employing X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence spectroscopy, respectively. The results indicate that adding H3BO3 flux can improve the luminescence intensity and morphology, and reduce the synthesis temperature of the Sr2MgAl22O36 phosphor. The formation temperature of pure-phase Sr2MgAl22O36 was significantly decreased when H3BO3 flux as introduced. The excited state lifetime of the Sr2MgAl22O36:1.2 mol% Mn4+ phosphor by the addition of 2.0 wt% H3BO3 was ~1.02 ms. We demonstrated the potential of these phosphors to enhance sunlight harvesting by agricultural light conversion film testing. We propose that films containing the Sr2MgAl22O36:1.2 mol% Mn4+ phosphor can be applied to increase the production of agricultural plants.  相似文献   

19.
The effect of increasing replacement of Al2O3 by B2O3 in a parent glass on the sintering and further crystallization of mullite was investigated. The composition of the parent glass was chosen in the mullite primary phase field of the CaO–MgO–Al2O3–SiO2 quaternary system. Glass powder pellets were heated under standard (10 °C/min and 2 h of hold time) and fast heatings (25 °C/min and 5 min of hold time) at different temperatures from 700 to 1190 °C. Sintering of B2O3-containing glasses took place in the range between 850 and 1050 °C. X-ray diffraction results showed that mullite formed as unique crystalline phase for glasses containing amounts of B2O3 larger than 6 wt%. For lower amounts of boron oxide cordierite was formed as secondary crystalline phase. Quantitative determination of mullite by Rietveld analysis indicated that the higher amount of mullite present in the glass-ceramic fast heated at 1160 °C was 19.5 wt% for the glass containing 9 wt% of B2O3. The final microstructure of the glass-ceramic glazes showed the presence of well shaped, long acicular mullite crystals dispersed within the residual glassy phase. Results of glass-ceramic glazes when applied as slurry and under industrial heating conditions pointed out promising mechanical properties.  相似文献   

20.
《Ceramics International》2017,43(9):7073-7079
MgO-Al2O3-SiO2-TiO2-La2O3 glass-ceramics were investigated with respect to the phase compositions and the microstructure as well as the microwave dielectric properties. Indialite, magnesium aluminum titanate (MAT, Mg4Al2Ti9O25), perrierite, and spinel were the main crystal phases in the studied 1.8MgO-1.2Al2O3-2.8SiO2-1.4TiO2-xLa2O3 (x=0.4, 0.3, 0.2) glass-ceramics. Mg4Al2Ti9O25 was detected inside the indialite domain as well as at the boundary while no decomposition product (rutile) is found, proving that Mg4Al2Ti9O25 is fully stabilized. After heat-treatment at 1200 °C, the quality factor (Q×f) of the glass-ceramics increases from 27,500 to 40,000 GHz with decreasing La2O3 concentrations. This is caused by the formation of more indialite and MAT. Meanwhile, the temperature coefficient (τf) shifts positively from −95 to −65 ppm/°C because of the smaller perrierite concentration. However, τf is still too negative due to the absence of rutile that possesses a high positive τf. For the 1.3MgO-1.2Al2O3-2.8SiO2-1.4TiO2-0.2La2O3 glass-ceramic with lower MgO molar composition, the peaks assigned to rutile is found and the chemical formula of MAT changes to MgAl2Ti3O10 while spinel disappears. MgAl2Ti3O10, which distributes mainly at the boundary, decomposes partially, leading to the precipitation of rutile inside the indialite domain. Thus, the τf of the glass-ceramic could be adjusted to near 0 ppm/°C with εr=9.9 and Q×f=28,600 GHz, which are favorable properties for microwave dielectric applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号