首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
《Ceramics International》2017,43(10):7724-7727
Ceramics in the system (1-x)[0.5K0.5Bi0.5TiO3-0.5Ba(Zr0.2Ti0.8)O3]-xBi(Zn2/3Nb1/3)O3 have been fabricated by a solid-state processing route for compositions x≤0.3. The materials are relaxor dielectrics. The temperature of maximum relative permittivity, Tm, decreased from 150 °C for composition x=0, to 70 °C for x=0.2. The x=0.2 sample displayed a wide temperature range of stable relative permittivity, εr, such that εr=805±15% from −20 to 600 °C (1 kHz). Dielectric loss tangent was ≤0.02 from 50 °C to 450 °C (1 kHz), but due to the tanδ dispersion peak, the value increased to 0.09 as temperatures fell from 50 °C to −20 °C. Values of dc resistivity were of the order of ~109 Ω m at 300 °C. These properties are promising in the context of developing new high temperature capacitor materials.  相似文献   

2.
Systematic investigation on phase transition, dielectric and piezoelectric properties of (1-x)K0.5Na0.5Nb0.997Cu0.0075O3-xSrZrO3 (x = 0, 0.03, 0.06, 0.09, 0.12, 0.15, abbreviated as KNNC-100xSZ) ceramics was carried out. Due to the coexistence of orthorhombic and tetragonal phase in a wide temperature range, a diffused polymorphic phase transition (PPT) region was achieved in KNNC with x  0.06. KNNC-12SZ ceramics exhibited high dielectric permittivity (∼1679), low dielectric loss (∼0.02) and small variation (Δe'/ε'25 °C  15%) in dielectric permittivity from −78 °C to 237.3 °C. KNNC-6SZ ceramic possessed a high level of unipolar strain (∼0.15%) and maintained a smaller variation of ±12% under the corresponding electric field of 60 kV cm−1 at 10 Hz from 25 °C to 175 °C. d33*, which was calculated according to the unipolar strain at 60 kV cm−1, was 230 pm V−1 and remained stable below 100 °C. Therefore, our work provided a new promising candidate for temperature-insensitive capacitors and piezoelectric actuators.  相似文献   

3.
《Ceramics International》2016,42(3):4532-4538
The structural, thermal and electrochemical properties of the perovskite-type compound La1−xNdxFe0.5Cr0.5O3 (x=0.10, 0.15, 0.20) are investigated by X-ray diffraction, thermal expansion, thermal diffusion, thermal conductivity and impedance spectroscopy measurements. Rietveld refinement shows that the compounds crystallize with orthorhombic symmetry in the space group Pbnm. The average thermal expansion coefficient decreases as the content of Nd increases. The average coefficient of thermal expansion in the temperature range of 30–850 °C is 10.12×10−6, 9.48×10−6 and 7.51×10−6 °C−1 for samples with x=0.1, 0.15 and 0.2, respectively. Thermogravimetric analyses show small weight gain at high temperatures which correspond to filling up of oxygen vacancies as well as the valence change of the transition metals. The electrical conductivity measured by four-probe method shows that the conductivity increases with the content of Nd; the electrical conductivity at 520 °C is about 4.71×10−3, 6.59×10−3 and 9.62×10−3 S cm−1 for samples with x=0.10, 0.15 and 0.20, respectively. The thermal diffusivity of the samples decreases monotonically as temperature increases. At 600 °C, the thermal diffusivity is 0.00425, 0.00455 and 0.00485 cm2 s−1 for samples with x=0.10, 0.15 and 0.20, respectively. Impedance measurements in symmetrical cell arrangement in air reveal that the polarization resistance decreases from 55 Ω cm−2 to 22.5 Ω cm−2 for increasing temperature from 800 °C to 900 °C, respectively.  相似文献   

4.
《Ceramics International》2016,42(3):4452-4461
The objective of the present study is to investigate the effect of sintering temperature on the structural, electrical and electrochemical properties of novel Mg0.5Si2 (PO4) 3 NASICON structured compound prepared via sol gel method. X-ray diffraction was used to study the structural properties such as crystalline phase and lattice parameters of the solid electrolytes. Electrical properties of the compound were measured using impedance spectroscopy while the electrochemical stability was investigated by linear sweep voltammetry. All the sintering temperatures yielded compounds consisted of monoclinic crystalline phase with a space group of P1 21/c1. Lattice parameters for Mg0.5Si2 (PO4) 3 samples increased from the sintering temperature at 700–800 °C but decreased for sintering temperature at 900 °C. The sample sintered at 800 °C showed the highest total conductivity of 1.83×10−5 S cm−1 and the highest value of ions mobility, µ of 6.17×1010 cm2 V−1 s−1 which was attributed to the optimum size of migration channel indicated by its unit cell volume. Linear sweep voltammetry result showed that the Mg0.5Si2 (PO4)3 powder was electrochemically stable up to 3.21 V.  相似文献   

5.
《Ceramics International》2007,33(6):951-955
The microwave dielectric properties of Sm(Zn1/2Ti1/2)O3 ceramics have been investigated. Sm(Zn1/2Ti1/2)O3 ceramics were prepared by conventional solid-state route with various sintering temperatures and times. The prepared Sm(Zn1/2Ti1/2)O3 exhibited a mixture of Zn and Ti showing 1:1 order in the B-site. Higher sintered density of 7.01 g/cm3 can be produced at 1310 °C for 2 h. The dielectric constant values (ɛr) of 22–31 and the Q × f values of 4700–37,000 (at 8 GHz) can be obtained when the sintering temperatures are in the range of 1250–1370 °C for 2 h. The temperature coefficient of resonant frequency τf was a function of sintering temperature. The ɛr value of 31, Q  ×  f value of 37,000 (at 8 GHz) and τf value of −19 ppm/°C were obtained for Sm(Zn1/2Ti1/2)O3 ceramics sintered at 1310 °C for 2 h. For applications of high selective microwave ceramic resonator, filter and antenna, Sm(Zn1/2Ti1/2)O3 is proposed as a suitable material candidate.  相似文献   

6.
The microwave dielectric properties of low-loss A0.5Ti0.5NbO4 (A = Zn, Co) ceramics prepared by the solid-state route had been investigated. The influence of various sintering conditions on microwave dielectric properties and the structure for A0.5Ti0.5NbO4 (A = Zn, Co) ceramics were discussed systematically. The Zn0.5Ti0.5NbO4 ceramic (hereafter referred to as ZTN) showed the excellent dielectric properties, with ɛr = 37.4, Q × f = 194,000 (GHz), and τf = −58 ppm/°C and Co0.5Ti0.5NbO4 ceramic (hereafter referred to as CTN) had ɛr = 64, Q × f = 65,300 (GHz), and τf = 223.2 ppm/°C as sintered individually at 1100 and 1120 °C for 6 h. The dielectric constant was dependent on the ionic polarizability. The Q × f and τf are related to the packing fraction and oxygen bond valence of the compounds. Considering the extremely low dielectric loss, A0.5Ti0.5NbO4 (A = Zn and Co) ceramics could be good candidates for microwave or millimeter wave device application.  相似文献   

7.
Lead-free 0.94NBT-0.06BT-xLa ceramics at x = 0.0–1.0 (%) were synthesized by a conventional solid-state route. XRD shows that the compositions are at a morphotropic phase boundary where rhombohedral and tetragonal phases coexist. With increasing La3+ content pyroelectric coefficient (p) and figures of merits greatly increase; however, the depolarization temperature (Td) decreases. p is 7.24 × 10−4C m−2 °C−1 at RT at x = 0.5% and 105.4 × 10−4C.m−2 °C−1 at Td at x = 0.2%. Fi and Fv show improvements at RT from 1.12 (x = 0%) to 2.65 (x10 −10 m v−1) (x = 0.5%) and from 0.021 to 0.048 (m2.C−1) respectively. Fi and Fv show a huge increase to 37.6 × 10−10 m v−1 and 0.56 m2 C−1 respectively at Td at x = 0.2%. FC shows values of 2.10, 2.89, and 2.98 (x10−9C cm−2 °C−1) at RT at 33, 100 and 1000 (Hz) respectively. Giant pyroelectric properties make NBT-0.06BT-xLa at x = 0.2% and 0.5% promising materials for many pyroelectric applications.  相似文献   

8.
0.96(K0.48Na0.52)NbO3-0.03[Bi0.5(Na0.7K0.2Li0.1)0.5]ZrO3-0.01(Bi0.5Na0.5)TiO3 single crystals were grown for the first time by the solid state crystal growth method, using [001] or [110]-oriented KTaO3 seed crystals. The grown single crystal shows a dielectric constant of 2720 and polarization-electric field loops of a lossy normal ferroelectric, with Pr = 45 μC/cm2 and Ec = 14.9 kV/cm, while the polycrystalline samples with a dielectric constant of 828 were too leaky for P-E measurement due to humidity effects. The single crystal has orthorhombic symmetry at room temperature. Dielectric permittivity peaks at 26 °C and 311 °C, respectively, are attributed to rhombohedral-orthorhombic and tetragonal–cubic phase transitions. Additionally, Raman scattering shows the presence of an orthorhombic-tetragonal phase transition at ∼150 °C, which is not indicated in the permittivity curves but by the loss tangent anomalies. A transition around 700 °C in the high temperature dc conductivity is suggested to be a ferroelastic-paraelastic transition.  相似文献   

9.
The oxygen permeability of mixed-conducting Sr1−xCaxFe1−yAlyO3−δ (x=0–1.0; y=0.3–0.5) ceramics at 850–1000 °C, with an apparent activation energy of 120–206 kJ/mol, is mainly limited by the bulk ionic conduction. When the membrane thickness is 1.0 mm, the oxygen permeation fluxes under pO2 gradient of 0.21/0.021 atm vary from 3.7×10−10 mol s−1 cm−2 to 1.5×10−7 mol s−1 cm−2 at 950 °C. The maximum solubility of Al3+ cations in the perovskite lattice of SrFe1−yAlyO3−δ is approximately 40%, whilst the brownmillerite-type solid solution formation range in Sr1−xCaxFe0.5Al0.5O3−δ system corresponds to x>0.75. The oxygen ionic conductivity of SrFeO3-based perovskites decreases moderately on Al doping, but is 100–300 times higher than that of brownmillerites derived from CaFe0.5Al0.5O2.5+δ. Temperature-activated character and relatively low values of hole mobility in SrFe0.7Al0.3O3−δ, estimated from the total conductivity and Seebeck coefficient data, suggest a small-polaron mechanism of p-type electronic conduction under oxidising conditions. Reducing oxygen partial pressure results in increasing ionic conductivity and in the transition from dominant p- to n-type electronic transport, followed by decomposition. The low-pO2 stability limits of Sr1−xCaxFe1−yAlyO3−δ seem essentially independent of composition, varying between that of LaFeO3−δ and the Fe/Fe1−γO boundary. Thermal expansion coefficients of Sr1−xCaxFe1−yAlyO3−δ ceramics in air are 9×10−6 K−1 to 16×10−6 K−1 at 100–650 °C and 12×10−6 K−1 to 24×10−6 K−1 at 650–950 °C. Doping of SrFe1−yAlyO3−δ with aluminum decreases thermal expansion due to decreasing oxygen nonstoichiometry variations.  相似文献   

10.
A facile method to prepare nanoscaled BaFe0.5Nb0.5O3 via synthesis in boiling NaOH solution is described herein. The nano-crystalline powder has a high specific surface area of 55 m2 g−1 and a crystallite size of 15 nm. The as-prepared powder does not show any significant crystallite growth up to 700 °C. The activation energy of the crystallite growth process was calculated as 590 kJ mol−1. Dense ceramics can be obtained either after sintering at 1200 °C for 1 h or after two-step sintering at 1000 °C for 10 h. The average grain sizes of ceramic bodies can be tuned between 0.23 μm and 12 μm. The thermal expansion coefficient was determined as 11.4(3)·10−6 K−1. The optical band gap varies between 2.90(5) and 2.63(3) eV. Magnetic measurements gave a Néel temperature of 20 K. Depending on the sintering regime, the ceramic samples reach permittivity values between 2800 and 137,000 at RT and 1 kHz.  相似文献   

11.
Ceramics in the system Ba(Ni1/3Nb2/3)O3–Ba(Zn1/3Nb2/3)O3 (BNN–BZN) were prepared by the mixed oxide route. Powders were mixed and milled, calcined at 1100–1200 °C then pressed and sintered at temperatures in the range 1400–1500 °C for 4 h. Selected samples were annealed or slowly cooled after sintering. Most products were in excess of 96% theoretical density. X-ray diffraction confirmed that all specimens were ordered to some degree and could be indexed to hexagonal geometry. Microstructural analysis confirmed the presence of phases related to Ba5Nb4O15 and Ba8Zn1Nb6O24 at the surfaces of the samples. The end members BNN and BZN exhibited good dielectric properties with quality factor (Qf) values in excess of 25,000 and 50,000 GHz, respectively, after rapid cooling at 240 °C h−1. In contrast, mid-range compositions had poor Qf values, less than 10,000 GHz. However, after sintering at 1450 °C for 4 h and annealing at 1300 °C for 72 h, specimens of 0.35(Ba(Ni1/3Nb2/3)O3)–0.65(Ba(Zn1/3Nb2/3)O3) exhibit good dielectric properties: τf of +0.6 ppm °C−1, relative permittivity of 35 and quality factor in excess of 25,000 GHz. The improvement in properties after annealing is primarily due to an increase in homogeneity.  相似文献   

12.
《Ceramics International》2016,42(6):7107-7117
The Ti3SiC2 and Ti3SiC2/Pb composites were tested under dry sliding conditions against Ni-based alloys (Inconel 718) at elevated temperatures up to 800 °C using a pin-on-disk tribometer. Detailed tribo-chemical changes of Pb on sliding surface were discussed. It was found that the tribological behavior were insensitive to the temperature from 25 °C (RT) to 600 °C (friction coefficient ≈0.61–0.72, wear rate ≈10−3 mm3 N m−1). An amount of Pb in the composites played a key role in lubricating with the temperature below 800 °C. The friction coefficient (≈0.22) and wear rate (≈10−7 mm3 N m−1) at elevated temperatures were both decreased by the added PbO. The wear mechanisms of Ti3SiC2/Pb-Inconel 718 tribo-pair at elevated temperatures were believed to be the combined effect of abrasive wear and tribo-oxidation wear. During the sliding, two oxidization reactions proceed, 2Pb+O2=2PbO (below 600 °C) and 6PbO+O2=2Pb3O4 (800 °C). The friction coefficient and wear rate of the composites were reduced due to the self-lubricating effect of the tribo-oxidation products.  相似文献   

13.
《Ceramics International》2017,43(15):11879-11884
Li6.5La3Zr1.5Nb0.5O12 (LLZN) garnet-type structure was synthesized at low temperature with B2O3 addition by solid state reaction method. The effects of B2O3 content on the formation, microstructure, ionic conductivity and activation energy of the LLZN solid electrolytes have been investigated by X-Ray diffraction (XRD), scanning electron microscopy (SEM) and alternate current (AC) impedance spectroscopy. The cubic LLZN phase was obtained after calcining at 850 °C for 6 h and no phase evolution was observed after sintering at 1100 °C for 6 h. The relative density and lithium ion conductivity increased first and then decreased with increasing B2O3 content, reaching the maximum value of 92.4% and 1.86×10−4 S cm−1 respectively in the sample with 1.4 wt% B2O3. By contrast, the activation energy reached a minimum value of ~31.5 kJ mol−1.  相似文献   

14.
The effect of B2O3 addition on the sintering, microstructure and the microwave dielectric properties of LiNb0.6Ti0.5O3 ceramics have been investigated. It is found that low-level doping of B2O3 (≤2 wt.%) can significantly improve the densification and dielectric properties of LiNb0.6Ti0.5O3 ceramics. Due to the liquid phase effect of B2O3 addition, LiNb0.6Ti0.5O3 ceramics could be sintered to a theoretical density higher than 95% even at 880 °C. No secondary phase was observed for the B2O3-doped ceramics. There is no obvious degradation in dielectric properties for the ceramics with B2O3 additions. In the case of 1 wt.% B2O3 addition, the ceramics sintered at 880 °C show good microwave dielectric properties of ɛr = 70, Q × f = 5400 GHz, τf = −6.39 ppm/°C. It represents that the ceramics could be promising for multilayer low-temperature co-fired ceramics (LTCC) applications.  相似文献   

15.
《Ceramics International》2017,43(4):3660-3663
A perovskite-type BaCe0.5Fe0.3Bi0.2O3-δ (BCFB) was employed as a novel cathode material for proton-conducting solid oxide fuel cells (SOFCs). The single cells with the structure of NiO-BaZr0.1Ce0.7Y0.2O3-δ (BZCY7) anode substrate|NiO-BZCY7 anode functional layer|BZCY7 electrolyte membrane|BCFB cathode layer were fabricated by a dry-pressing method and investigated from 550 to 700 °C with humidified hydrogen (~3% H2O) as the fuel and the static air as the oxidant. The low interfacial polarization resistance of 0.098 Ω cm2 and the maximum power density of 736 mW cm−2 are achieved at 700 °C. The excellent electrochemical performance indicates that BCFB may be a promising cathode material for proton-conducting SOFCs.  相似文献   

16.
《Ceramics International》2017,43(7):5642-5646
Perovskite-structured Li3/8Sr7/16Zr1/4Nb3/4O3 solid-state Lithium-conductors were prepared by conventional solid-state reaction method. Influence of sintering aids (Al2O3, B2O3) and excess Lithium on structure and electrical properties of Li3/8Sr7/16Zr1/4Nb3/4O3 (LSNZ) has been investigated. Their crystal structure and microstructure were characterized by X-ray diffraction analysis and scanning electron microscope, respectively. The conductivity and electronic conductivity were evaluated by AC-impedance spectra and potentiostatic polarization experiment. All sintered compounds are cubic perovskite structure. Optimal amount of excess Li2CO3 was chosen as 20 wt% because of the total conductivity of LSNZ-20% was as high as 1.6×10−5 S cm−1 at 30 °C and 1.1×10−4 S cm−1 at 100 °C, respectively. Electronic conductivity of LSNZ-20% is 2.93×10−8 S cm−1, nearly 3 orders of magnitude lower than ionic conductivity. The density of solid electrolytes appears to be increased by the addition of sintering aids. The addition of B2O3 leads to a considerable increase of the total conductivity and the enhancement of conductivity is attributed to the decrease of grain-boundary resistance. Among these compounds, LSNZ-1 wt%B2O3 has lower activation energy of 0.34 eV and the highest conductivity of 1.98×10−5 S cm−1 at 30 °C.  相似文献   

17.
0.93Bi0.5Na0.5TiO3-0.07BaTiO3 (BNTBT) and KNbO3 (KN) powders with average particle size of ∼50 nm and ∼300 nm were synthesized by sol-gel method and hydrothermal method, respectively. Then, (1  x)(BNTBT)-xKN (BNTBT-KN, x = 0, 0.01, 0.03, 0.05, 0.07) ceramic samples were prepared using these two powder precursors. The structure, dielectric and energy-storage properties of BNTBT-KN ceramics were comprehensively investigated. All the ceramic samples were in single perovskite structure, indicating that KN can completely dissolve into BNTBT within the studied composition range. BNTBT-KN ceramics exhibited a high dielectric constant at room temperature, being in the order of 1430–1550. Ferroelectric hysteresis loops at room temperature became more slim with the increase of KN content, which largely improved energy-storage density and efficiency. For the composition of x = 0.05, the maximum recoverable energy-storage density reached 1.72 J/cm3 under 16.8 kV/mm, which is superior to linear dielectrics and even some Pb-based systems. All these results demonstrate that 0.95BNTBT-0.05KN fabricated by wet-chemical method is a promising lead-free dielectric material for energy-storage capacitors.  相似文献   

18.
BaxSr1−xCo0.8Fe0.2O3−δ (0.3  x  0.7) composite oxides were prepared and characterized. The crystal structure, thermal expansion and electrical conductivity were studied by X-ray diffraction, dilatometer and four-point DC, respectively. For x  0.6 compositions, cubic perovskite structure was obtained and the lattice constant increased with increasing Ba content. Large amount of lattice oxygen was lost below 550 °C, which had significant effects on thermal and electrical properties. All the dilatometric curves had an inflection at about 350–500 °C, and thermal expansion coefficients were very high between 50 and 1000 °C with the value larger than 20 × 10−6 °C−1. The conductivity were larger than 30 S cm−1 above 500 °C except for x > 0.5 compositions. Furthermore, conductivity relaxation behaviors were also investigated at temperature 400–550 °C. Generally, Ba0.4Sr0.6Co0.8Fe0‘2O3−δ and Ba0.5Sr0.5Co0.8Fe0.2O3−δ are potential cathode materials.  相似文献   

19.
A new bi-oxo capped molybdenum carboxylate, [Mo33-O)2(μ-O2CCH2Cl)6(H2O)2(OH)]+, was synthesized by refluxing [Mo33-O)2(μ-O2CCH3)6(H2O)3]2 + in chloroacetic acid for 20 h (T = 110 °C). Using ion-exchange chromatography (0.5 M NaClO4 eluant), the trinuclear molybdenum ion was isolated and allowed to crystallize slowly (T = 4 °C) as the perchlorate salt (yield 23%). Upon dissolution of the compound in methanol-d4, substitution of the terminal ligands for solvent occurs readily in which the observed exchange rate constant is kobs298K = 5.3 × 10 5 0.3) s 1 and activation parameters equal to ΔH3 = 130 (± 10) kJ mol 1 and ΔS3 = 111 (± 33) J mol 1 K 1. From the kinetic data, we find that ligand substitution follows a dissociative pathway and that rates of substitution are faster than expected when compared to the molybdenum acetate analog. Herein, we report the synthesis, crystallographic study, and substitution reactivity of a new molybdenum bi-oxo capped cluster with bridging chloroacetate ligands.  相似文献   

20.
《Ceramics International》2016,42(11):12537-12542
The energy-storage performance and dielectric properties of tape-cast (Pb0.92Ba0.05La0.02)(Zr0.68Sn0.27Ti0.05)O3 (PBLZST) antiferroelectric (AFE) thick films with different thicknesses were systematically studied. As the thickness of the thick films increased from 40 to 80 µm, the dielectric constant and saturation polarization (Ps) of the thick films were gradually increased, while their corresponding breakdown strength (BDS) was decreased. A maximum recoverable energy-storage density of 6.8 J/cm3, companied by an efficiency of 61.2%, was achieved in the PBLZST AFE thick film with a thickness of 40 µm at room temperature. Moreover, the energy density of the PBLZST AFE thick films also displayed good thermal stability over 25–200 °C. In addition, all the samples had a low leakage current density of ~10−6 A/cm2 at room temperature. These findings demonstrated that the PBLZST thick films should be a promising candidate for applications in high energy-storage capacitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号