共查询到20条相似文献,搜索用时 0 毫秒
1.
《Ceramics International》2023,49(2):2410-2418
Sr(Ti1-xFex)O3?δ (STF) perovskite has been developed as one of the alternatives to Nickel-base fuel electrodes for solid oxide electrochemical cells (SOCs) that can provide good tolerance to redox cycling and fuel impurities. Recent results on STF fuel electrodes present excellent electrochemical performance and outstand stability both under H2 fuel cell mode and H2O electrolysis mode, however, the electrochemical characteristics in other fuel gases, such as CO, CO–H2 mixture, CH4, and CO–CO2 mixture have not been investigated. Herein, we report the electrochemical performance of Sr(Ti0.3Fe0.7)O3?δ fuel electrode on La0.8Sr0.2MnO3?δ-Zr0.92Y0.16O2?δ (LSM-YSZ) oxygen electrode supported SOCs with thin YSZ electrolyte using different fuel gases. At 800 °C, the peak power density slightly decreased from 0.9 W/cm2 in wet H2 to 0.68 W/cm2 in wet CO under fuel cell mode. However, the cell only showed a peak power density of 0.27 W/cm2 at 800 °C in wet CH4, reaching 0.75 W/cm2 at 850 °C, when the open-circuit voltage increased from 0.9 V to 1.02 V. STF fuel electrode exhibited much worse CO2 electrolysis performance than steam electrolysis, especially in high CO2 concentration due to the increased ohmic resistance and electrode polarization resistance. 相似文献
2.
《Ceramics International》2023,49(18):30187-30195
In this study, we report a novel medium-entropy perovskite oxide of La0.7Sr0.3Co0.25Fe0.25Ni0.25Mn0.25O3-δ (LSCFNM73) with high constitutive entropy (Sconfig) as the cathode material of intermediate temperature solid oxide fuel cells (IT-SOFCs). The intrinsic properties of phase structure, electrical conductivity, thermal expansion and oxygen adsorption capacity of La1-xSrxCo0.25Fe0.25Ni0.25Mn0.25O3-δ (LSCFNM, x = 0, 0.1, 0.2, 0.3) oxides are evaluated in detail. The LSCFNM73 oxide exhibits the maximum electrical conductivity of 464 S cm−1 at 800 °C and a relatively lower thermal expansion coefficient (TEC) of 15.34 × 10−6 K−1, which is selected as the propriate cathode composition. The B-site of LSCFNM73 contains four elements which can increase the configuration entropy. Additionally, NiO-Yttria stabilized zirconia (YSZ) supported fuel cell is fabricated by tape casting, hot pressing-lamination, co-sintering and screen printing technologies. The fuel cell demonstrates a maximum power density of 1088 mW cm2 at 800 °C, and excellent stability at 750 °C under 0.75V in 120 h and 10 times thermal cycling between 750 °C and 400 °C. Therefore, the medium-entropy LSCFNM73 oxide can be applied in IT-SOFCs as a competitive cathode material. 相似文献
3.
《Ceramics International》2015,41(7):8411-8416
In this work, we examine the benefits of alternative powder processing methods, with a primary focus on microwave-based synthesis, that could both lower material manufacturing costs and further enhance cathode performance for solid oxide fuel cell applications. La0.3Ca0.7Fe0.7Cr0.3O3−δ (LCFCr), formed using conventional solid-state methods, has been shown in earlier work to be a very promising catalyst for the oxygen reduction reaction. To further increase its performance, microwave methods were used to increase the surface area of LCFCr and to decrease the synthesis time. It was found that the material could be obtained in crystalline form in only 7 h, with the synthesis temperature lowered by roughly 300 °C as compared to conventional methods. 相似文献
4.
《Ceramics International》2022,48(18):25940-25948
Aiming to offer a high-performance Co-free cathode for intermediate-temperature solid oxide fuel cells (IT-SOFCs), a series of La0.8Sr0.2Fe1-xCuxO3-δ (LSFCux, x = 0.0–0.3) nanofiber cathodes were synthesized by the electrospinning method. The effects of various Cu doping amounts on the crystal structure, fiber morphology, and electrochemical performance of LSF nanofiber cathode materials were investigated. The results indicate that after being calcined at 800 °C for 2 h, the perovskite structure samples with a high degree of crystallinity are obtained. The morphology of electrospun nanofibers is continuous, and the average diameter of nanofibers is about 110 nm. In addition, the La0.8Sr0.2Fe0.8Cu0.2O3-δ (LSFCu2) fiber cathode displays the optimal electrochemical performance, and the polarization resistance (Rp) is 0.674 Ω cm2 at 650 °C. The doping of Cu transforms the main control step of the low-frequency band from dissociation of oxygen molecules to charge transfer on the electrode, and the maximum power density (Pm) of the Ni-SDC/SDC/LSFCu2 single cell reaches 362 mW cm-2 at 650 °C. 相似文献
5.
Effects of electrospraying parameters on deposition of La0.3Sr0.7Fe0.7Cr0.3O3−δ cathode layer on GDC
Sedat Akkurt Can Sındıraç Tuğçe Özmen Egesoy Gökçe Atıcı Elif Erişman Emre Erğen Aligül Büyükaksoy 《International Journal of Applied Ceramic Technology》2023,20(3):1512-1525
High performance in intermediate temperature solid oxide fuel cells requires improvements especially in the microstructure of the cathode layer. New cobalt-free cathode materials are used because cobalt-containing cathodes have higher thermal expansion coefficients, poor long-term chemical stability, and lower mechanical stability. Recently cobalt-free cathodes have been proposed to solve these issues by using deposition methods other than electrospray deposition (ESD). In this study, ESD method is used to develop a cobalt-free cathode layer. The electrolyte layer is gadolinium-doped ceria that is deposited with La0.3Sr0.7Fe0.7 Cr0.3O3−δ (LSFCr) prepared by 2-butoxyethanol and ethylene glycol solvents as opposed to conventional solvents. Experimental ESD parameters are tested at different levels and combinations by applying statistical experimental design methods to optimize the microstructure. Coating deposited as such demonstrated higher electrochemical performance than similar electrodes fabricated by other methods. 相似文献
6.
《Ceramics International》2016,42(10):11907-11912
Pr0.4Sr0.6Co0.2Fe0.7Nb0.1O3−δ (PSCFN) nanofibers and their corresponding Pr0.4Sr0.6Co0.2Fe0.7Nb0.1O3−δ–Gd0.2Ce0.8O1.9 (PSCFN–GDC) composites have been synthesized and applied as cathodes for intermediate temperature solid oxide fuel cells (IT-SOFCs). In this paper, PSCFN nanofibers were obtained through electro-spinning and the following pyrolysis process. The resultant PSCFN nanofibers were infiltrated with GDC precursor to prepare nanofiber-structured PSCFN–GDC composite cathodes. The optimal PSCFN: GDC mass ratio of 1: 0.10 was identified to possess the lowest interfacial polarization resistances of 0.264, 0.155, 0.039 and 0.018 Ω cm2 at 650, 700, 750 and 800 °C, respectively, lower than those of the PSCFN–GDC nanoparticle-structured composite cathode. The PSCFN–GDC (1: 0.10) shows an excellent stability of electrochemical activity under a current density of 200 mA cm−2 for 100 h at 800 °C. All results proved that the nanofiber-structured PSCFN–GDC composite could act as a highly efficient cathode candidate for the IT-SOFCs. 相似文献
7.
《Journal of the European Ceramic Society》2022,42(14):6566-6573
The key issue that limits the electrochemical performance of proton-conducting solid oxide fuel cells (H+-SOFCs) is the sluggish kinetics of the oxygen reduction reaction (ORR) of cathode at intermediate and low temperatures. Herein, oxygen vacancy engineering is conducted on cobalt-free Ba0.95La0.05FeO3?δ (BLF) by nickel substitution, which is confirmed by density functional theory computations. Nickel-substituted BLF material (Ba0.95La0.05Fe1?xNixO3?δ (x = 0, 0.1, 0.2, 0.3)) can promote the generation of oxygen vacancies and improve catalytic activity, which is found to be in line with the experimental results of XPS. The phase structure, microstructure, and electrochemical performance of Ba0.95La0.05Fe0.8Ni0.2O3?δ (BLFNi0.2) are well-investigated. The single cells with the BLFNi0.2-BaCe0.7Zr0.1Y0.1Yb0.1O3?δ (BCZYYb) composite cathode achieve low polarization resistance (Rp) of 0.099 Ω cm2 and a peak power density of 631 mW cm?2 at 700 °C while maintaining good durability for 120 h with no observable degradation. The results demonstrate that Ni-doped BLF is a promising cobalt-free cathode material for H+-SOFCs. 相似文献
8.
Preparation and characterization of La0.7Sr0.3Cr1-xFexO3-δ anode catalyst with sulfur tolerance for SOFC 下载免费PDF全文
采用尿素燃烧法制备了La0.7Sr0.3Cr1-xFexO3-δ(x=0.2,0.3,0.4,0.5)系列阳极材料。采用TG-DTA、XRD对所制备的材料进行表征,利用直流四探针法测定催化剂在400~850 ℃温度时在空气中的电导率,并测试了电池电化学性能。结果表明:LSCrF系列材料具有很好的热稳定性,钙钛矿相晶型结构完整,与BaCe0.475Zr0.425Y0.1O3-δ电解质之间具有较好的化学相容性。同时,XRD显示LSCrF系列材料在硫化氢气氛中具有很好的化学稳定性。LSCrF7355在850℃的电导率最大为1.18 S/cm,其单电池的开路电压值为0.76 V,最大输出功率为7.16 mW/cm2,满足固体氧化物燃料电池阳极催化剂的要求,是一种新型的耐硫阳极材料。 相似文献
9.
《Ceramics International》2017,43(10):7929-7934
Sc-substituted La0.6Sr0.4FeO3-δ (LSFSc) has been synthesized for utilization as an integrated ceramic interconnector of tubular-solid oxide cells (SOCs). Redox stability and electric conductivity of LSFSc were improved by optimizing the scandium (Sc) doping concentration, the pH of the synthetic solutions and the calcination temperature of the organic precursors. The crystalline phases of LSFSc were stable when the pH of the synthetic solution was below 2 and the calcination temperature was over 1200 °C. As the Sc concentration increased, redox stability was improved while the electrical conductivity decreased. To consider the trade-off relationship between electrical conductivity and phase stability, La0.6Sr0.4Fe0.9Sc0.1O3-δ can be considered as one of the stable compositions for an integrated ceramic interconnector of tubular-SOCs. 相似文献
10.
Lanthanum-based iron- and cobalt-containing perovskite has a high potential as a cathode material because of its high electro-catalytic activity at a relatively low operating temperature in solid oxide fuel cells (SOFCs) (600–800). To enhance the electro-catalytic reduction of oxidants on La0.6Sr0.4Co0.2Fe0.8O3?δ (LSCF), Ga doped ceria (Ce0.9Gd0.1O1.95, GDC) supported LSCF (15LSCF/GDC) is successfully fabricated using an impregnation method with a ratio of 15 wt% LSCF and 85 wt% GDC. The cathodic polarization resistances of 15LSCF/GDC are 0.015 Ω cm2, 0.03 Ω cm2, 0.11 Ω cm2, and 0.37 Ω cm2 at 800 °C, 750 °C, 700 °C, and 650 °C, respectively. The simply mixed composite cathode with LSCF and GDC of the same compositions shows 0.05 Ω cm2, 0.2 Ω cm2, 0.56 Ω cm2, and 1.20 Ω cm2 at 800 °C, 750 °C, 700 °C, and 650 °C, respectively. The fuel cell performance of the SOFC with 15LSCF/GDC shows maximum power densities of 1.45 W cm?2, 1.2 W cm?2, and 0.8 W cm?2 at 780 °C, 730 °C, and 680 °C, respectively. GDC supported LSCF (15LSCF/GDC) shows a higher fuel cell performance with small compositions of LSCF due to the extension of triple phase boundaries and effective building of an electronic path. 相似文献
11.
《Ceramics International》2020,46(3):3082-3090
The substitution of Ca for Sr in the LnSr3-xCaxFe3O10-δ (x = 0–1.5, Ln = La, Pr, and Sm), Ruddlesden-Popper (RP) intergrowth structure was investigated to determine how the physical and electrochemical properties of this potential cathode material in solid oxide fuel cells (SOFCs) are impacted. A small amount of Ca incorporated into the structure reduced the thermal expansion coefficient, improved the electrical conductivity, and increased power density by up to 30% of a La0.8Sr0.2Ga0.8Mg0.2O3 electrolyte-supported single cell. The microstructure and oxygen permeability of the materials were independent of Ca substitution. A phase transformation of LaSr3-xCaxFe3O10-δ to perovskite was observed when the Ca composition of x > 1.0. Among the substitution of Pr and Sm for La in LaSr2.7Ca0.3Fe3O10-δ, only PrSr2.7Ca0.3Fe3O10-δ was pure with no phase transformation found. The co-substitution of Pr and Ca promoted the reduction of Fe, enhanced the oxygen permeation and active surface, and diminished the contact resistance at the cathode-electrolyte interlayer. The co-substitution of Ca and Pr delivered good electrochemical performance of approximately 354 mWcm−2 at 800 °C on a 0.3 mm thick La0.8Sr0.2Ga0.8Mg0.2O3 electrolyte-supported cell and the lowest area specific resistance (ASR). 相似文献
12.
《Ceramics International》2016,42(15):16981-16991
The objective of this work is to investigate the mechanical behavior of CGO-LSCF composite developed by electrostatic spray deposition as an oxygen electrode for Solid Oxide Fuel Cell and Solid Oxide Electrolysis Cell. The coating is characterized by a highly porous morphology designated coral microstructure. Its mechanical behavior was studied by scratch and ultramicroindentation tests and a model of material degradation under progressive compressive loading has been proposed. The coral's damage mechanism involves three regimes: at very low loads stresses are concentrated at the tips of individual corals that fracture and fill the spaces between corals (regime I); as load increases, generalized fracture of the corals occurs and the material starts compacting into an increasingly dense layer (regime II); finally, at the highest loads, the material behaves like an almost fully dense (regime III). As load increases during testing porosity decreases from about 60 to about 5 vol% in the compacted material. The transitions between regimes are associated to increases in the contact stress and the same damage mechanism is found during scratching and indentation. Hardness increases from about 2–100 MPa, while the Young's modulus varies in the range 1–18 GPa, as the porosity decreases. Calculations of the real contact pressure during loading allowed estimating a yield stress of 83 MPa that can be considered as a low limit for the materials fracture strength. 相似文献
13.
Angela Gondolini Elisa Mercadelli Guillaume Constantin Laurent Dessemond Vitaliy Yurkiv Rémi Costa Alessandra Sanson 《Journal of the European Ceramic Society》2018,38(1):153-161
Lanthanum doped strontium titanate–gadolinium doped cerium oxide (LST-GDC) anodic layers are sintered in air and further reduced in-situ at low temperature (750 °C) avoiding usually performed pre-reduction treatment at high temperature. The influence of various milling techniques and of powders with different specific surface area, on the microstructures of screen-printed anodes, is investigated. The combination of milling and sonication processes is efficient in reducing aggregation of the anode powders. The anode performance is improved when a planetary milling step is involved in the preparation of the screen printing inks. The use of gadolinium doped cerium oxide with high specific surface area decreases the polarization resistance. The rate of hydrogen oxidation is also enhanced by increasing porosity. 相似文献
14.
《Journal of the European Ceramic Society》2003,23(9):1417-1426
The linear thermal expansion coefficients (TECs) of perovskite-type La0.3Sr0.7Fe1−xGaxO3−δ (x=0–0.4), determined by dilatometric and high-temperature X-ray diffraction techniques, are in the range (19–41)×10−6 K−1 at 770–1170 K, decreasing when the oxygen partial pressure or gallium concentration increases. At oxygen pressures from 10−4 to 1 atm, the isothermal chemically induced expansion of La0.3Sr0.7Fe(Ga)O3−δ ceramics is a linear function of the oxygen nonstoichiometry. The magnitude of changes in δ and, thus, chemical expansion both are reduced by gallium doping. The ratio between isothermal chemical strain and nonstoichiometry variations, (εC/Δδ), follows an Arrhenius-type dependence on temperature and varies in the range (1.7–5.9)×10−2. The drastic increase in the thermal expansion at temperatures above 700 K, typical for ferrite-based ceramics, was shown to be mainly apparent, resulting from the chemically-induced expansion of the lattice due to oxygen losses. The TEC values, corrected for the chemical strain on heating, are close to the TECs at low temperatures and increase with gallium content. The observed correlations between the thermal and chemical expansion and ionic conductivity of La0.3Sr0.7Fe1−xGaxO3−δ are discussed in terms of their relationships with the oxygen deficiency and cation composition. 相似文献
15.
Zhongqiu Li Bo Wei Zhe Lü Yaohui Zhang Kongfa Chen Jipeng Miao Wenhui Su 《Ceramics International》2012,38(4):3039-3046
A perovskite-type (Ba0.5Sr0.5)0.85Gd0.15Co0.8Fe0.2O3?δ (BSGCF) oxide has been investigated as the cathode of intermediate temperature solid oxide fuel cells (IT-SOFCs). Coulometric titration, thermogravimetry analysis, thermal expansion and four-probe DC resistance measurements indicate that the introduction of Gd3+ ions into the A-site of Ba0.5Sr0.5Co0.8Fe0.2O3?δ (BSCF) leads to the increase in both oxygen nonstoichiometry at room temperature and electrical conductivity. For example, the conductivity of BSGCF is 148 S cm?1 at 507 °C, over 4 times as large as that of BSCF. Furthermore, the electrochemical activity toward the oxygen reduction reaction is also enhanced by the Gd doping. Impedance spectra conducted on symmetrical half cells show that the interfacial polarization resistance of the BSGCF cathode is 0.171 Ω cm2 at 600 °C, smaller than 0.297 Ω cm2 of the BSCF cathode. A Ni/Sm0.2Ce0.8O1.9 anode-supported single cell based on the BSGCF cathode exhibits a peak power density of 551 mW cm?2 at 600 °C. 相似文献
16.
《Ceramics International》2023,49(18):30178-30186
The electrocatalytic conversion of ethane to ethylene is an important industrial process since ethylene is useful for the production of various chemical intermediates and polymers. However, this process often requires high temperatures. Metal-oxide heterogeneous interfaces constructed by in-situ exsolved process under reducing conditions would be favorable for promoting the catalyst activity, selectivity, and stability of ethane conversion to ethylene. Herein, Sr1.95Fe1.4Co0.1Mo0.5O6-δ (abbreviated as SFCoM) was prepared as a novel anode material of solid oxide electrolysis cells (SOECs) for green ethylene production by electrochemical oxidative dehydrogenation of ethane. After reduction, nano CoFe particles were in-situ exsolved on SFCoM oxides to form a nano alloy-oxide heterostructure (CoFe@SFCoM) with large numbers of reactive sites, relevant for improving the conversion rate of ethane and the yield of ethylene. At 800 °C, the single cell based on CoFe@SFCoM anode exhibited a current density of 1.89 A cm−2 at 1.6 V with an ethane conversion rate of 36.4% and corresponding ethylene selectivity of 94.5%. After 50 h of testing, the electrolysis current density(∼0.5 A cm−2) and ethylene yield(∼18.43%) of the single cell did not change significantly, showing good stability. In sum, CoFe@SFCoM looks very promising for future use as a SOECs anode for the electro-catalytic conversion of ethane to ethylene. 相似文献
17.
《Journal of the European Ceramic Society》2022,42(13):5801-5812
Recently, SrTi0.3Fe0.7O3?δ (STF) has been investigated as a highly stable oxygen electrode material for solid oxide electrochemical cells (SOCs) with a sufficiently low resistance for cell operation at temperatures of > 700 °C. However, in general, the STF electrode performance is limited at temperatures of ≤ 700 °C due to the low oxygen surface exchange coefficient, which is mainly caused by high Sr surface segregation. To improve the electrode performance, Sr0.9(Ti0.3Fe0.7)O3?δ (A-STF) with an A-site-deficient design is developed to reduce the Sr content and thus reduce the Sr surface segregation, thereby providing a unique combination of excellent oxygen electrode performance and long-term stability. The A-site deficiency reduces the electrode polarization resistance by > 3 times at 600 °C and clearly improves the oxygen diffusion and surface exchange coefficients due to the decrease of Sr surface segregation. The A-STF electrode exhibits stable performance in the fuel cell and electrolysis modes at 1 A cm?2 > 1200 h. The stability of STF-based oxygen electrodes in a CO2-enriched atmosphere is investigated, and the results indicate that A-STF exhibits excellent CO2 tolerance. 相似文献
18.
《Catalysis communications》2004,5(6):311-316
Mixed-conducting La0.3Sr0.7Co0.8Ga0.2O3-δ (LSCG) possesses substantial oxygen permeability, but exhibits a high activity to complete CH4 oxidation, thus making it necessary to incorporate reforming catalysts in the membrane reactors for methane conversion. Dominant CO2 formation is observed for the steady-state conversion of CH4 by atmospheric oxygen (methane/air ratio of 30:70) in a fixed bed reactor with LSCG as catalyst, and for the oxidation of CH4 pulses supplied in helium flow over LSCG powder. The conversion of dry CH4 by oxygen permeating through dense LSCG ceramics, stable operation of which under the air/CH4 gradient is possible due to the surface-limited oxygen transport, yields CO2 concentrations higher than 90%. The prevailing mechanism of total methane combustion is probably associated with weak Co–O bonding in the perovskite-related LSCG lattice, in correlation with data on oxygen desorption, phase stability and ionic transport. 相似文献
19.
M.J. Santillán A. Caneiro N. Quaranta A.R. Boccaccini 《Journal of the European Ceramic Society》2009,29(6):1125-1132
Porous thick films of La0.6Sr0.4Co0.8Fe0.2O3?δ (LSCF) on Ce0.9Gd0.1O1.95 (CGO) substrates were prepared by the electrophoretic deposition (EPD) method. Organic suspensions of different compositions containing LSCF ceramic particles were investigated with the aim to determine the optimal composition of the suspension and EPD conditions. Stainless steel substrates were used in order to determine the optimal parameters for the EPD process. The best results were achieved with solutions containing acetylacetone, iodine and starch. The EPD conditions leading to uniform LSCF films were: applied voltage 20 V and deposition time 120 s, with the electrodes separated 1.5 cm. EPD was also demonstrated to be a simple and useful method for making porous LSCF cathodes on CGO substrates. It was shown that the microstructure of the films can be controlled by changing the applied voltage, deposition time and concentration of additives in suspension. 相似文献
20.
This study reports the successful preparation of a single-phase cubic (Ba0.5Sr0.5)0.8La0.2CoO3?δ perovskite by the citrate–EDTA complexing method. Its crystal structure, thermogravimetry, coefficient of thermal expansion, electric conductivity, and electrochemical performance were investigated to determine its suitability as a cathode material for intermediate-temperature solid oxide fuel cells (IT-SOFCs). Its coefficient of thermal expansion shows abnormal expansion at 300 °C, which is associated with the loss of lattice oxygen. The maximum conductivity of a (Ba0.5Sr0.5)0.8La0.2CoO3?δ electrode is 689 S/cm at 300 °C. Above 300 °C, the electronic conductivity of (Ba0.5Sr0.5)0.8La0.2CoO3?δ decreases due to the formation of oxygen vacancies. The charge-transfer resistance and gas phase diffusion resistance of a (Ba0.5Sr0.5)0.8La0.2CoO3?δ–Ce0.8Sm0.2O1.9 composite cathode are 0.045 Ω cm2 and 0.28 Ω cm2, respectively, at 750 °C. 相似文献