首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
针刺工艺参数对炭布网胎增强C/C材料力学性能的影响   总被引:2,自引:0,他引:2  
采用机械针刺技术, 研究了针刺密度、针刺深度对原位针刺增强碳布网胎迭层预制体结构C/C材料力学性能的影响. 结果表明, 采用高的针刺密度和针刺深度参数, 可获得高的预制体密度和纤维体积分数, 针刺密度和针刺深度对材料层间剪切性能的影响程度比对压缩、弯曲性能的影响程度大, 采用一定密度的碳布网胎时, 在一定范围内, 提高针刺密度和深度能提高材料的力学性能,当针刺密度控制在20~50针/cm2、针刺深度控制在12~16mm时, C/C材料力学性能随两针刺参数值升高而提高; 当针刺密度控制在30针/cm2时, C/C材料弯曲及X-Y向压缩强度分别达到137.68、224MPa, 剪切强度达到15.5MPa, 针刺深度为12mm时, 材料弯曲及X-Y向压缩强度分别达到134.24、213.2MPa, 为较佳的针刺工艺参数.  相似文献   

2.
直热式化学气相渗C/C复合材料研究   总被引:1,自引:1,他引:0  
采用直热式化学气相渗工艺制备了 C/ C复合材料 ,以 2 D无纬织物和碳毡为纤维预制体 ,液化石油气为碳源气体 ,在常压下经 2 5 h左右沉积得到整体密度分别为 1.6 0 g· cm- 3和 1.78g· cm- 3的 C/ C复合材料。观察了材料的微观结构 ,测试了材料的力学性能和热物理性能。结果表明 ,直热式化学气相渗制备的 C/ C复合材料具有良好的力学性能和热物理性能 ,是一种较为理想的制备 C/ C复合材料的新工艺。  相似文献   

3.
为研究两种不同预制体增强的碳/碳(C/C)复合材料的损伤破坏机制差别,将为该材料应用于结构件提供依据,对碳毡及2.5D编织结构增强的C/C复合材料的常温弯曲、剪切、压缩性能进行了测试,并用扫描电镜观察其断面形貌,对C/C复合材料在静态载荷下的力学性能及损伤破坏行为进行研究,探讨有关因素对材料性能和损伤破坏的影响.研究结果表明:两种不同增强体的C/C复合材料的断裂机理存在很大差异,且密度对C/C复合材料的常温力学性能有较大的影响.  相似文献   

4.
炭纤维针刺预制体增强C/SiC复合材料的制备与性能研究   总被引:2,自引:0,他引:2  
以炭纤维复合网胎针刺织物为预制体, 采用“化学气相渗透法+先驱体浸渍裂解法”(CVI+PIP)混合工艺, 制备了C/SiC陶瓷复合材料; 研究了针刺预制体的致密化效率以及复合材料的微观结构和力学性能, 并与目前常用的三维编织C/SiC复合材料和预氧丝针刺织物增强C/SiC复合材料进行了对比. 结果表明, 针刺预制体的致密化效率明显高于三维编织预制体, 在相同致密工艺条件下, 炭纤维针刺织物增强复合材料和预氧丝针刺织物增强复合材料的密度分 别达到2.08和2.02g/cm3, 而三维编织预制体增强复合材料的密度仅为1.81g/cm3. 炭纤维针刺复合材料的力学性能高于预氧丝针刺复合材料, 弯曲强度和剪切强度分别达到237和26MPa.  相似文献   

5.
2D-C/C复合材料是以二维碳纤维为增强体,以化学气相渗透的热解碳或液相浸渍炭化的树脂碳、沥青碳为基体组成的一种纯碳多相二维结构材料,是一种新型高性能结构功能复合材料,大量运用在航空航天等高新技术领域.目前研究集中于其宏观性能方面,难点在于其组织结构和性能的可控性、可调性.主要介绍了二维碳纤维预制体和针刺碳纤维,基体碳的微观结构和添加剂,纤维/基体界面和界面修饰,以及制备工艺对2D-C/C复合材料性能的影响.结合2D-C/C复合材料的结构特点,概述了2D-C/C复合材料热物理性能、力学性能及氧化烧蚀等行为的各向异性.此外,还展望了其研究发展方向.  相似文献   

6.
主要对比了编织C/C复合材料和针刺C/C复合材料的轴向热力学性能.编织C/C复合材料主要有径棒法、轴棒法、轴向穿刺三种,针刺C/C复合材料主要有炭布叠层针刺、整体毡两种.编织预制体密度较高,平均可达到0.70g/cm3以上,针刺类整体毡密度在0.20g/cm3左右,炭布叠层预制体密度在0.45g/cm3左右,均低于编织预制体.径棒法、轴棒法、轴向穿刺预制体轴向纤维含量≥19%,针刺类预制体轴向纤维含量约为5%.C/C复合材料的轴向拉伸强度、热膨胀系数与预制体编织结构、轴向纤维含量有关,编织类C/C复合材料轴向拉伸强度平均值≥40MPa,针刺类C/C复合材料轴向拉伸强度在10MPa左右.轴棒法、轴向穿刺、炭布叠层针刺、整体毡等四种C/C复合材料(RT~800℃)轴向热膨胀系数基本相当.  相似文献   

7.
采用Design-expert软件设计预制体不同针刺成型参数组合试验, 研究预制体针刺成型参数对针刺碳/碳(C/C)复合材料拉伸强度的影响, 并构建了响应曲面数学模型, 实现对针刺C/C复合材料拉伸强度的优化与预测, 其模型显著性P=0.0206, 各试验实测值与预测值相对误差≤10.82%, 模型具有较高的拟合度。响应曲面回归分析表明: 针刺深度对拉伸强度有极显著影响, 针刺密度对拉伸强度有显著影响, 在本研究的针刺成型参数取值范围内, 拉伸强度的预测区间为42.31~91.87 MPa。通过模型优化出的针刺成型参数组合为: 针刺密度11 pin/cm2、针刺深度 11 mm、网胎面密度50 g/m2, 相应拉伸强度预测值为88.62 MPa, 验证值为90.71 MPa, 相对误差2.36%。  相似文献   

8.
反应熔体渗透C/SiC复合材料的摩擦性能   总被引:4,自引:0,他引:4  
以不同结构类型及密度的C/C复合材料为预制体,采用反应熔体渗透法制备了C/SiC复合材料,研究了不同结构C/SiC复合材料的密度、组分含量、热扩散系数与摩擦性能相互之间的关系.结果表明随着碳含量的降低,复合材料的密度增加;短切纤维C/SiC、低密度针刺C/SiC与高密度针刺C/SiC复合材料的平均摩擦系数分别为:0.28,0.28与0.42;随着热扩散系数的增加,复合材料的摩擦稳定性系数升高;并且对于短切纤维C/SiC,摩擦实验后基本形成了连续光亮的摩擦面.  相似文献   

9.
多向细编碳/碳复合材料界面力学性能测试与表征   总被引:5,自引:1,他引:4       下载免费PDF全文
本文用自制装置研究了多向细编C/C复合材料纤维束性能,分析了工艺过程的影响。同时用界面微脱粘实验技术研究了C/C复合材料界面性能,给出了相应的理论模型和界面应力分布,提出了由界面脱粘力,纤维、基体和复合材料性能表征界面剪切强度的方法,为C/C复合材料优化设计提供了定量参数。结果表明:织物结构、织物编织工艺以及织物/基体复合对纤维的强度影响很大,降为原始纤维的20%左右,对模量影响小。不同界面层次,纤维/基体的界面结合情况和界面剪切强度不同,Z向纤维束中纤维/基体结合好,具有最高的结合强度,SEM观察证实有大量基体碳在纤维上枝联。  相似文献   

10.
三维针刺碳毡中碳纤维的排布方式有利于电磁波的吸收。采用碳基体和氮化硼(BN)基体与三维针刺碳毡复合, 可望获得耐高温吸波复合材料。本文中采用先驱体浸渗裂解法(PIP)制备多孔三维针刺碳/碳(C/C)复合材料, 再利用化学气相渗透法(CVI)将BN引入C/C复合材料中, 最终获得了C/C--BN复合材料。研究了CVI时间对三维针刺C/C--BN复合材料微结构、 力学性能及介电性能的影响规律。随着CVI时间的增加, C/C--BN的密度增加, 孔隙率降低, 抗弯强度提高, 介电常数增加,介电损耗降低。在CVI时间达160h后, C/C--BN密度为1.43g/cm3, 总气孔率为25%, 抗弯强度达到82MPa。   相似文献   

11.
《复合材料学报》2008,25(5):91-97
以针刺碳纤维整体毡为预制体,采用化学气相渗透工艺对预制体纤维进行PyC/SiC/TaC的多层复合模式的涂层改性, 然后采用化学气相渗透和热固性树脂浸渍-化进行增密,制备出新型C/C复合材料。对复合材料的微观结构和力学性能进行了研究。结果表明:包覆在碳纤维表面的PyC/SiC/TaC多层结构均匀致密、无裂纹,在C/C复合材料中形成空间管状网络结构;改性后C/C复合材料的抗弯强度和韧性均大大提高, 平均抗弯强度达到522 MPa,断裂位移达到1.19mm;复合材料弯曲断裂形式表现为脆性断裂,经过2000℃高温热处理以后,复合材料的抗弯强度下降,但最大断裂位移增大,弯曲断裂形式由脆性断裂转变为良好的假塑性断裂。   相似文献   

12.
为研究针刺C/C-SiC复合材料的剪切损伤行为,首先,进行了面内剪切加卸载实验,并利用SEM对复合材料的剪切破坏形貌进行了观测;然后,建立了一种塑性与损伤相结合的非线性本构模型描述复合材料的非线性力学行为,以幂函数描述等效塑性应变与等效应力的关系;最后,基于剪切强度的Weibull分布规律提出了一种指数型损伤变量表征剪切刚度的退化,并通过实验数据拟合得到模型中的参数。结果表明:复合材料在卸载后存在明显的残余应变,卸载模量随载荷的增加不断降低,表现出明显的剪切非线性特征;大量无纬布纤维束和纤维单丝拔出,且易在针刺部位发生破坏;由于针刺部位等缺陷的不规律分布,剪切强度存在一定的分散性,符合指数型Weibull统计分布规律;复合材料的剪切非线性主要由基体开裂和纤维/基体界面脱粘等内部损伤引起,从宏观上可以解释为塑性变形和刚度性能折减。所得结论表明本构模型能够很好地表征C/C-SiC复合材料的面内剪切非线性行为。   相似文献   

13.
ZrC改性C/C-SiC复合材料的力学和抗烧蚀性能   总被引:1,自引:0,他引:1       下载免费PDF全文
采用碳纤维针刺预制体, 用前驱体浸渍裂解(PIP)法分别制备了C/C-SiC和C/C-SiC-ZrC陶瓷基复合材料, 并对材料的微观结构、力学和烧蚀性能进行了分析对比。结果表明:利用该方法可制备出陶瓷相填充充分且分布均匀的复合材料。C/C-SiC-ZrC的面内弯曲强度、厚度方向的压缩强度、层间剪切强度均低于对应的C/C-SiC的。2 200 ℃、600 s氧化烧蚀后, C/C-SiC-ZrC的抗烧蚀性能显著优于C/C-SiC, 其线烧蚀率下降43.8%, 质量烧蚀率下降25%。在超高温阶段, C/C-SiC-ZrC复合材料基体的ZrC氧化生成的ZrO2溶于SiC氧化生成的SiO2中, 形成黏稠的二元玻璃态混合物, 有效阻止了氧化性气氛进入基体内部。   相似文献   

14.
薄层化碳布缝合碳/碳复合材料制备与性能   总被引:1,自引:0,他引:1       下载免费PDF全文
为获得高性能、低成本碳/碳复合材料,以商用级T700大丝束薄层化碳纤维展宽平纹布和航空航天级T300小丝束碳纤维缎纹布为原材料制备缝合预制体,采用化学气相沉积工艺方法制备了一系列缝合碳/碳复合材料,对材料的气相致密化特征、微观结构特征和力学性能进行了测试与分析.研究结果表明,碳布规格和缝合间距对材料气相致密化效果和力学...  相似文献   

15.
通过X-Y向拉伸强度、Z向剥离强力、NOL环整体拉伸强度表征预制体性能,研究了炭布叠层针刺预制体的结构特点.结果表明:X-Y向拉伸强度反映了针刺对连续纤维的损伤程度,其随针刺密度升高而降低.网胎面密度对Z向预制体剥离强力的影响规律性不明显,3 K炭布针刺预制体剥离强力高于6K和12K炭布针刺预制体,斜纹炭布针刺预制体剥离强力高于缎纹炭布预制体.NOL整体拉伸环破坏有完全断裂、褶皱式不完全断裂、层间剥离三种模式;3 K缎纹炭布针刺预制体NOL环拉伸强度最低,只有3 MPa,呈现整体拉伸完全断裂破坏模式;12 K缎纹炭布针刺预制体呈现层间破坏模式;6 K缎纹炭布针刺预制体的破坏方式为褶皱式不完全断裂模式,整体力学性能较好.相同工艺预制体环向拉伸强度远大于X-Y向拉伸强度.  相似文献   

16.
解惠贞  孙建涛  何轩宇  薛朋飞  秦淑颖 《材料导报》2018,32(2):268-271, 277
采用针刺预制体经化学气相沉积与沥青浸渍-高压碳化致密工艺制备C/C复合材料,通过控制沥青浸渍-高压碳化致密次数,获得了密度分别为1.70g/cm~3、1.82g/cm~3、1.89g/cm~3的三种C/C材料,测试材料的力学、热学性能。结果表明材料拉伸强度随密度升高而降低。当密度较低时,纤维/基体界面结合强度相对较低,可以延缓纤维断裂的发生;拉伸断口显示出假塑性断裂特征,有利于材料拉伸强度的提高。材料的压缩强度与剪切性能密切相关,且均随密度升高表现出先升后降的趋势。材料的热膨胀系数随密度升高而增大,材料中微晶之间的空隙在受热过程中可以吸收一部分膨胀量,因此对于C/C材料,降低密度有利于降低热膨胀系数。材料导热系数随密度升高而明显增大,且随密度升高,微晶尺寸增大,有利于晶格振动的传递,从而使得导热系数增大。热应力因子随密度升高而先升后降,作为热结构件使用时,采用密度为1.82g/cm~3的C/C材料可以获得相对较高的抗热震能力。在C/C材料研究开发中,可以综合对材料力学、热学性能的要求来对C/C材料密度指标进行设计。  相似文献   

17.
采用“化学气相渗透法+先驱体浸渍裂解法”(CVI+PIP)混合工艺制备了薄壁C/C-SiC复合材料构件,研究了C/C多孔体的热处理对C/C-SiC构件密度、变形量及力学性能的影响。研究结果表明:中间热处理可提高C/C的开孔率,有利于SiC的渗入,制备出密度较高的C/C-SiC复合材料构件;中间热处理对构件的层间剪切性能影响不大,但影响构件面内拉伸强度和整体承压性能;中间热处理会导致薄壁C/C-SiC构件在内外径和高度方向发生变形;合适的热处理温度(1600~1800℃)使C/C-SiC构件界面结合强度适中,面内拉伸强度及整体承压性能有了极大的提高;而较高的热处理温度(2100~2300℃)使碳纤维强度下降,使构件拉伸强度及整体承压性能大幅下降。  相似文献   

18.
Carbon/carbon (C/C) composites were prepared by thermal gradient chemical vapor infiltration with a fast densification rate. The fracture morphology and mechanical properties were examined by scanning electron microscopy and mechanical testing, respectively. The effects of preform type and heat treatment temperature (HTT) on the mechanical properties of C/C composites were analyzed. The results show that the average flexural strength drops from 47.8 MPa to 38.6 MPa as the HTT increases from 2100 °C to 2500 °C. C/C composites with felt as preform show brittle fracture and samples with needle-punched felt as reinforcement present obvious pseudoplastic property. The interlaminar shear strength of needle-punched felt reinforced composites is higher than that of sample with felt as preform by 44.26% owing to the needle-punched fiber in the thickness direction. The strength of interfacial bonding plays a key role to mechanical properties and failure behavior of C/C composites.  相似文献   

19.
采用针刺预制体经化学气相沉积与沥青浸渍-高压碳化致密工艺制备C/C复合材料,通过控制沥青浸渍-高压碳化致密次数,获得了密度分别为1.70 g/cm3、1.82 g/cm3、1.89 g/cm3的三种C/C材料,测试材料的力学、热学性能.结果表明材料拉伸强度随密度升高而降低.当密度较低时,纤维/基体界面结合强度相对较低,可以延缓纤维断裂的发生;拉伸断口显示出假塑性断裂特征,有利于材料拉伸强度的提高.材料的压缩强度与剪切性能密切相关,且均随密度升高表现出先升后降的趋势.材料的热膨胀系数随密度升高而增大,材料中微晶之间的空隙在受热过程中可以吸收一部分膨胀量,因此对于C/C材料,降低密度有利于降低热膨胀系数.材料导热系数随密度升高而明显增大,且随密度升高,微晶尺寸增大,有利于晶格振动的传递,从而使得导热系数增大.热应力因子随密度升高而先升后降,作为热结构件使用时,采用密度为1.82 g/cm3的C/C材料可以获得相对较高的抗热震能力.在C/C材料研究开发中,可以综合对材料力学、热学性能的要求来对C/C材料密度指标进行设计.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号