共查询到19条相似文献,搜索用时 78 毫秒
1.
为获得高性能热结构复合材料,以国产T300碳纤维为原料,通过碳布预浸料交替铺层热压及液相浸渍裂解工艺方法制备了一系列二维碳/碳复合材料,并对二维碳/碳复合材料的微观结构特征、力学性能及烧蚀性能进行了测试与分析。研究结果表明:碳布规格及制备工艺对二维碳/碳复合材料力学性能有较大影响,当碳布规格选用八枚缎纹、经过碳化预处理且高温处理温度达到2 300℃时,二维碳/碳复合材料表现出较好的综合性能,拉伸强度和层间剪切强度的最大值分别高达301 MPa和12.4 MPa,达到了国际先进水平;在模拟典型服役环境考核状态下,制备的不同规格二维碳/碳复合材料的烧蚀性能基本相当,均未出现由于层间强度偏低而发生的烧蚀揭层现象,表现出较好的烧蚀均匀性和结构可靠性。 相似文献
2.
3.
本文用自制装置研究了多向细编C/C复合材料纤维束性能,分析了工艺过程的影响。同时用界面微脱粘实验技术研究了C/C复合材料界面性能,给出了相应的理论模型和界面应力分布,提出了由界面脱粘力,纤维、基体和复合材料性能表征界面剪切强度的方法,为C/C复合材料优化设计提供了定量参数。结果表明:织物结构、织物编织工艺以及织物/基体复合对纤维的强度影响很大,降为原始纤维的20%左右,对模量影响小。不同界面层次,纤维/基体的界面结合情况和界面剪切强度不同,Z向纤维束中纤维/基体结合好,具有最高的结合强度,SEM观察证实有大量基体碳在纤维上枝联。 相似文献
4.
中间相沥青基碳/碳复合材料的组织与性能 总被引:7,自引:0,他引:7
以3K PAN基碳纤维为增强体,以中间相沥青为基体前驱体,采用压力浸渍-碳化工艺制备出2D中间相沥青基碳/碳复合材料.研究分析了材料的偏光组织结构、弯曲性能及弯曲断口形貌,结果表明:基体碳的组织结构随碳化压力的不同而变化,低压时以小域组织为主,高压时以广域流线型组织为主;材料的抗弯强度、密度随碳化压力的增加而增高,最高抗弯强度可达278MPa;断裂特征与材料的密度、界面结合状况有关,密度较高、界面结合适中时,弯曲断口以纤维断裂、纤维拔出为主,材料具有韧性断裂特征. 相似文献
5.
6.
7.
作为一种储量丰富的农业废弃物,稻壳的高附加值利用具有重要意义。以稻壳为原料,通过空气氧化、镁热还原和酸浸得到硅/碳复合材料,探讨了复合材料的组成结构以及作为锂离子电池负极材料的电化学性能。结果表明:硅/碳复合材料中的硅为晶体纳米颗粒,分布在无定形炭基质中;稻壳的氧化增加了硅/碳复合材料中硅的含量和复合材料的比表面积,从而增加了复合材料的容量,但首次库伦效率较低;硅/碳复合材料中的碳可以抑制硅的体积变化,改善循环性能。含碳8%的硅/碳复合材料,首次充电容量758.5mAh/g,30次循环后充电容量保持率为78.7%。 相似文献
8.
C/SiC/Si-Mo-Cr复合涂层碳/碳复合材料力学性能研究 总被引:3,自引:1,他引:3
采用包埋法和涂刷法在碳/碳复合材料表面制备了一种新型的C/SiC/Si-Mo-Cr复合高温抗氧化涂层. 借助XRD和SEM等测试手段对所制备复合涂层的微观结构进行了表征, 采用三点弯曲试验研究了涂层处理及热震试验对碳/碳复合材料力学性能的影响规律. 结果表明: 制备的多相涂层结构致密, 涂层后碳/碳复合材料弯曲强度有所增大, 断裂特征由假塑性向脆性转变. 涂层试样经1500℃至室温20次热震后, 涂层试样的弯曲强度降低, 塑性增强. 相似文献
9.
2D-C/C复合材料是以二维碳纤维为增强体,以化学气相渗透的热解碳或液相浸渍炭化的树脂碳、沥青碳为基体组成的一种纯碳多相二维结构材料,是一种新型高性能结构功能复合材料,大量运用在航空航天等高新技术领域.目前研究集中于其宏观性能方面,难点在于其组织结构和性能的可控性、可调性.主要介绍了二维碳纤维预制体和针刺碳纤维,基体碳的微观结构和添加剂,纤维/基体界面和界面修饰,以及制备工艺对2D-C/C复合材料性能的影响.结合2D-C/C复合材料的结构特点,概述了2D-C/C复合材料热物理性能、力学性能及氧化烧蚀等行为的各向异性.此外,还展望了其研究发展方向. 相似文献
10.
11.
两种双基体C/C复合材料的微观结构与力学性能 总被引:1,自引:0,他引:1
借助偏光显微镜、扫描电镜以及力学性能测试研究了两种双基体C/C复合材料的微观结构与力学性能。结果表明:基体碳在偏光显微镜下呈现出热解碳的光滑层组织,沥青碳的各向同性、镶嵌和流域组织。在SEM下普通沥青碳为"葡萄状"结构,中间相沥青碳为片层条带状结构。具有多层次界面结构的材料可以提高材料的弯曲强度,改善材料的断裂韧度,两种材料在载荷-位移曲线中载荷为台阶式下降,呈现出假塑性断裂特征。材料A和材料B的弯曲强度分别为206.68,243.66MPa,断裂韧度分别为8.06,9.66MPa·m1/2,材料B的弯曲强度、断裂韧度均优于材料A。 相似文献
12.
C/SiC复合材料的常压制备与性能研究 总被引:1,自引:0,他引:1
采用聚碳硅烷作为碳化硅先驱体, 以二维0°/90°正交编织碳布叠层后作为增强体, 采用真空压力浸渍的方法制备了C/SiC复合材料, 研究了裂解温度和浆料浓度对复合材料性能的影响. 结果表明: 复合材料的弯曲强度随着裂解温度的升高以及浆料浓度的增加都呈增加趋势; 基体在纤维束内部分布均匀, 但依然有一些小气孔存在; 在1100℃时, 基体中开始生成一定量的β-SiC相, 复合材料的三点弯曲强度达到232MPa, 断裂韧性达到10.50MPa·m1/2. 在断裂过程中表现出明显的韧性断裂, 断口有较长的纤维拔出. 相似文献
13.
以有机ZrC、ZrB2前驱体和聚碳硅烷的混合溶液为浸渍前驱体, 利用聚合物浸渍裂解法(PIP)制备了C/C-ZrC-SiC-ZrB2复合材料, 并对材料的微观形貌、弯曲和烧蚀性能进行了研究。研究结果表明: 利用该方法可制备出陶瓷相填充充分且分布均匀的C/C-ZrC-SiC-ZrB2复合材料。材料的弯曲强度为126.31 MPa, 断面有大量的纤维束拔出, 表现出良好的假塑性断裂模式。经过120 s氧–乙炔烧蚀, 材料无明显烧蚀, 其线烧蚀率和质量烧蚀率分别为–2.50×10-4 mm/s和–1.33×10-4 g/s。在材料表面不同区域形成不同的保护层, 不仅能够降低氧气和热流向材料内部扩散, 还具有弥补缺陷的作用, 使材料表现出优异的抗烧蚀性能。 相似文献
14.
热处理温度对中间相沥青基碳/碳复合材料力学性能的影响 总被引:1,自引:0,他引:1
通过三点弯曲实验,并借助XRD,SEM断口形貌分析,研究了最终热处理温度对中间相沥青基碳/碳复合材料微观结构与力学性能的影响,并对其断裂机制进行了探讨.结果表明:随着最终热处理温度的升高,材料的石墨化度增大,层间距d002减小,微晶尺寸Lc增大;材料未经热处理时,纤维与基体间界面结合较强,抗弯强度较高,弯曲断口较为平整,具有脆性断裂特征;随着热处理温度的升高,基体收缩,纤维与基体间界面结合减弱,抗弯强度减小,弯曲断口纤维拔出较长,材料具有韧性断裂特征. 相似文献
15.
采用电泳沉积(EPD)在1k碳布表面均匀加载了碳纳米管(CNTs), 借助化学气相沉积(CVD)致密化碳布叠层预制体, 制备了EPD CNTs掺杂的二维(2D)碳/碳(C/C)复合材料。研究了EPD CNTs对2D C/C复合材料致密化过程、微观组织和弯曲性能的影响。研究结果表明: EPD CNTs在碳纤维表面呈现平面内高密度、杂乱取向分布特征, 该形貌CNTs降低了热解炭在碳纤维预制体内的沉积速率, 诱导了高石墨微晶堆垛高度(Lc)、低(002)晶面面内方向上的沉积有序度(La)热解炭的形成; EPD CNTs的掺杂可提高C/C复合材料的弯曲强度和模量: 当CNTs含量为0.74wt%时, 复合材料弯曲强度和模量可达150.83 MPa和23.44 GPa, 比纯C/C复合材料提高了31.4%和13.9%; 继续提高CNTs含量, 复合材料弯曲强度降低, 这与过高含量EPD CNTs导致复合材料密度降低有关; 同时, EPD CNTs的掺杂使得C/C复合材料断裂模式由脆性断裂转变为假塑性断裂, 复合材料断裂塑性的提高是由于EPD CNTs造成的碳基体结构的变化以及碳纤维的大量拔出。 相似文献
16.
采用正交设计试验法探索了添加剂对快速CVD抗氧化C/C复合材料力学性能的影响,确定了优化配方。实验结果表明:采用优化配方制备的C/C复合材料氧化起始点为657℃,弯曲强度高达254MPa,弯曲模量49MPa。分析了添加剂对这种材料力学性能的影响规律。 相似文献
17.
前驱体对C/C复合材料的致密化和性能的影响 总被引:2,自引:0,他引:2
研究了分别以甲烷和丙烯为前驱体对制备C/C复合材料的新型ICVI工艺致密化速率及组织结构和力学性能的影响.考察了密度与致密化时间之间的变化规律和密度分布,采用偏光显微镜和扫描电镜观察材料的组织结构和试样的断口形貌,利用三点弯曲实验测定材料的弯曲强度.实验结果表明:在致密化时间100h前,以甲烷为前驱体,C/C复合材料的致密化速率比丙烯为前驱体时低,100h后致密化速率发生逆转;以甲烷为前驱体所得C/C复合材料的密度梯度小,组织结构为粗糙层,弯曲强度为250.87MPa,模量为29.29GPa;而以丙烯为前驱体所得C/C复合材料的密度梯度大,组织结构为光滑层,弯曲强度为102.75MPa,模量为11.42GPa.因此,相对而言甲烷作为制备C/C复合材料的前驱体优于丙烯. 相似文献
18.
三维针刺碳毡经化学气相渗透(Chemical Vapor Infiltration,CVI)增密制备C/C素坯,通过气相渗硅(Gaseous Silicon Infiltration,GSI)制备C/C-SiC复合材料。研究素坯密度与CVI C层厚度及素坯孔隙率的变化规律,并分析素坯密度对C/C-SiC复合材料力学性能、热学性能的影响。结果表明:随着素坯密度增大,CVI C层变厚,孔隙率减小;C/C-SiC复合材料中残C量随之增大,残余Si量随之减小,SiC先保持较高含量(体积分数约40%),随后迅速降低,C/C-SiC复合材料密度逐渐减小,力学性能先增大后减小,而热导率及热膨胀系数降低至平稳。当素坯密度为1.085g/cm3时,复合材料力学性能最好,弯曲强度可达308.31MPa,断裂韧度为11.36MPa·m1/2。研究发现:素坯孔隙率较大时,渗硅通道足够,残余硅多,且CVI C层较薄,纤维硅蚀严重,C/C-SiC复合材料力学性能低;素坯孔隙率较小时,渗硅通道很快阻塞,Si和SiC含量少,而闭孔大且多,C/C-SiC复合材料力学性能也不高。 相似文献
19.
采用密度为1.0g/cm~3的C/C素坯,联合化学气相渗透(CVI)和气相渗硅(GSI)2种工艺制备C/C-SiC复合材料,研究CVI C/C-SiC复合材料中间体的密度对CVI-GSI C/C-SiC复合材料物相组成、微观结构及力学性能的影响。结果表明:随着CVI C/C-SiC复合材料中间体密度的增大,CVI-GSI C/C-SiC复合材料C含量增多,残余Si含量减少,SiC含量先增多后减少,CVI-GSI C/C-SiC复合材料的密度先增大后减小;随着CVI C/C-SiC复合材料中间体的密度由1.27g/cm~3增加到1.63g/cm~3时,得到的CVI-GSI C/C-SiC复合材料的力学性能先升高后降低。当CVI C/C-SiC复合材料密度为1.42g/cm~3时,制得的CVI-GSI C/C-SiC复合材料力学性能最好,其弯曲强度为247.50MPa,弯曲模量为25.63GPa,断裂韧度为10.08MPa·m~(1/2)。 相似文献