首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Aliovalent Sc3+ doped pyrochlores NdGdZr2?xScxO7?δ (0.0  x  0.15) have been prepared by gel-combustion method followed by high temperature sintering. Detailed structural characterization of these compounds has been carried out using X-ray diffraction and Raman spectroscopy, which together have established the retention of pyrochlore structure of these compositions till x = 0.15 Sc3+ incorporation. Both X-ray diffraction and Raman results have also indicated the presence of local lattice distortion with net cell contraction upon Sc3+ incorporation in these solid solutions. Micro structural studies have revealed highly dense end products with uniform grain distribution and homogeneous compositions at grain size level. Ionic conductivity characterization of system been carried out from 473 to 573 K. A significant improvement in the total ionic conductivity of this series has been observed which has been explained in terms of additional oxygen vacancies created upon Sc3+ incorporation and enhanced lattice disorder.  相似文献   

2.
《Ceramics International》2017,43(2):1716-1721
Perovskite-type structured solid electrolytes with the general formula (Li0.25La0.25)1−xM0.5xNbO3 (M=Sr, Ba, Ca, x=0.125) have been prepared by solid-state reaction. Their crystal structure and ionic conductivity were examined by means of X-ray diffraction analysis (XRD), scanning electron microscope (SEM), and alternating current (AC) impedance technique. All sintered compounds are isostructural with the parent compound Li0.5La0.5Nb2O6. Some impurity phase is detected at the grain boundary in the Ba- and Ca-substituted compounds. The substitution of partial Li+ by alkaline earth metal ions has responsibility for the cell volume expansion as determined by the XRD data. The densification is accelerated, with the overall porosity and grain boundary minimized as Sr2+ ions are doped. Among the investigated compounds, the perovskite (Li0.25La0.25)0.875Sr0.0625NbO3 shows a remarkable ionic conductivity of 1.02×10−5 S/cm at room temperature (20 °C) and the lowest activation energy of 0.34 eV in comparison with 0.38 eV and 0.44 eV for the corresponding Ba- and Ca-doped samples, respectively. It is identified that the enhancement of ionic conductivity is attributed to a reduction in activation energy for ionic conduction which is related to an increase in the cell volume.  相似文献   

3.
Fine grain nanocomposites of (100 ? x) PbZr0.52Ti0.48O3 ? (x) CeO2 with x = 0.5, 1 and 2 wt%, were prepared and characterized for structural and microstructural changes. Addition of ceria nanoparticles resulted into a fine grain microstructure with average grain size ranging from 600 nm to 440 nm and a significant decrease in sintering temperature (~200 °C). Size distribution profile, as analyzed by lognormal distribution function suggests a very narrow size distribution. X-ray diffraction analyses of sintered samples reveal that fine grain PZT/CeO2 nanocomposite could retain distorted tetragonal structure even with grain size as low as 440 nm. Further, complex impedance spectroscopy studies were performed to illustrate the electrical properties of bulk and grain boundary phases in fine grain ceramics. Two electrical processes in the impedance spectra at temperatures above 350 °C were attributed to bulk and grain boundary phase. Magnitude of grain boundary capacitance and corresponding transition was found to be strongly dependent on grain size of the system. Both bulk and grain boundary relaxation processes follows Arrhenius law.  相似文献   

4.
Samples of SmxCe1 ? xO2 ? δ (0.05  x  0.55) were prepared by solid-state reactions and the disorder–order phase transition and grain ionic conductivity were investigated using XRD and ac impedance spectroscopy technique, respectively. For 0  x  0.35 the material has a fluorite structure and gradually stabilizes into a C-type rare-earth structure at 0.40  x  0.55 because of oxygen-vacancy ordering. The highest grain ionic conductivity observed is 0.0565(37) S cm?1 at 700 °C for Sm0.20Ce0.80O2 ? δ with an associated activation energy (EA) of 0.791(7) eV. The slopes for EA and pre-exponential factor change during phase transition and the conductivity decreases monotonically. Upon comparison of the EA between the SmO1.5–CeO2 and NdO1.5–CeO2 systems, it is seen EA for the SmO1.5–CeO2 system is lower than NdO1.5–CeO2 system at compositions with less than 25% trivalent rare earth element while higher EA is observed for the SmO1.5–CeO2 system at Nd/Sm concentrations above 25%.  相似文献   

5.
Impedance spectroscopy (IS) has been used to study the influence on the low frequency part of the impedance diagrams of the microstructure of a fast ionic conductor, Li3xLa2/3−xTiO3 with x = 0.10 (named hereafter LLTO). This oxide has been synthesised by sol–gel method. After synthesis, the powder of LLTO displays a large distribution of grain size and agglomerates. The grain size distribution and the porosity of the ceramic have been changed by heat-treatment from 600 °C to 1200 °C in air. The impedance spectra of these ceramics, recorded at different temperatures from room temperature (RT) to 400 °C, show a low-frequency depressed arc, which is characteristic of the grain boundary response of the ceramic. Its shape depends strongly on the heat-treatment of the ceramic, and therefore, on its microstructure. It is a simple arc when the pellet is well sintered but becomes very complex for non-sintered ceramics with high resistive grain boundary and pores. The observed “fish” shape indicates the presence of current “detours effect” in the material. This effect means that current detours around blocking grain boundary and/or pores occur to lower the impedance. Consequently, the brick layer model (BLM), which assumes an ideal microstructure, and then no current “detours effect”, can not be used to analyse these impedance data.  相似文献   

6.
《Ceramics International》2017,43(10):7810-7815
Sodium zirconium silicon phosphorus with the composition of Na3Zr2Si2PO12 (NZSP) was prepared by a facile solid state reaction method. The effects of the calcination temperature and rare earth element substitution on the structure and ionic conductivity of the NZSP material were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and AC impedance measurement. The results show that the microstructure and ionic inductivity of the NZSP was strongly affected by the aliovalent substitution of Zr4+ ions in NZSP with rare earth metal of La3+, Nd3+ and Y3+. At room temperature, the optimum bulk and total ionic conductivity of the pure NZSP solid electrolyte sintered under different conditions were 6.77×10−4 and 4.56×10−4 S cm−1, respectively. Substitution of La3+, Nd3+ and Y3+ in place of Zr4+ exhibited higher bulk conductivity compared with that of pure NZSP. Maximum bulk and ionic conductivity value of 1.43×10−3 and 1.10×10−3 S cm−1 at room temperature were obtained by Na3+xZr1.9La0.1Si2PO12 sample. The charge imbalance created by aliovalent substitution improves the mobility of Na+ ions in the lattice, which leads to increase in the conductivity. AC impedance results indicated that the total ionic conductivity strongly depends on the substitution element and the feature of the grain boundary.  相似文献   

7.
《Ceramics International》2016,42(15):16798-16803
Na0.5Bi0.5TiO3 (NBT) based oxide-ion conductor ceramics have great potential applications in intermediate-temperature solid oxide fuel cells (SOFCs) and oxygen sensors. Na0.5Bi0.49Ti1−xMgxO3−δ ceramics with x=0, 0.01, 0.02, 0.03, 0.05 and 0.08 were prepared by conventional solid-state reaction. XRD measurement and SEM analysis revealed the formation of pure perovskite structures without secondary phase. MgO doping greatly decreased the sintering temperature and inhibited grain growth. AC impedance spectroscopy measurement was adopted to measure the total conductivity, which was found to increase with MgO doping content ranging from 0 to 3 mol% and subsequently to decrease. High oxygen ionic conductivity σt=0.00629 S/cm was achieved for sample doped with 3 mol% MgO at 600 °C in air atmosphere.  相似文献   

8.
The effects of the co-doping and the resultant co-segregation of 2 mol% TiO2 and 2 mol% GeO2 on the ionic conductivity and on the chemical bonding state in a tetragonal ZrO2 polycrystal were investigated. The conductivity data and grain boundary microstructure showed that the doped Ti4+ and Ge4+ cations segregate along the grain boundary, and this segregation causes a reduction in the conductivity of both the grain interior and grain boundary and an increase in the activation energy of the grain boundary conductivity. Overall, the data indicate that the segregation retards the diffusion of oxygen anions. A first-principle molecular orbital calculation explains the retarded diffusion of the oxygen anion from a change in the covalent bonds around the dopant cations; an increase in the strength of the covalent bond between the oxygen and doped cation should work to suppress the diffusion of the oxygen anion.  相似文献   

9.
The electrical conducting properties of both hydrated and dehydrated BaCe0.85Y0.15O3?δ (barium cerate, BCY) were investigated at low temperature (473–203 K) by an AC impedance analyzer combined with a dielectric interface. For the BCY, the bulk and grain boundary conductivities were separated with the equivalent circuit model, and the bulk conductivity was approximately two orders of magnitude higher than the grain boundary conductivity. At very low temperature (203 K), a single semicircle was obtained in the impedance plot, whereas three distinct semicircles were plotted in modulus plot due to the three different resistance components in the system. The activation energy of bulk conductivity was 0.55 eV and 0.57 eV for the hydrated and dehydrated BCY samples, respectively.  相似文献   

10.
In this study, the ceramic powders of Ce1?xGdxO2?x/2 and Ce1?xNdxO2?x/2 (x=0.05, 0.10, 0.15, 0.20 and 0.25) were synthesized by ultrasound assisted co-precipitation method. The ionic conductivity was studied as a function of dopant concentration over the temperature range of 300–800 °C in air, using the impedance spectroscopy. The maximum ionic conductivity, σ800 °C=4.01×10?2 Scm?1 with the activation energy, Ea=0.828 kJmol?1 and σ800 °C=3.80×10?2 Scm?1 with the activation energy, Ea=0.838 kJmol?1 were obtained for Ce0.90Gd0.10O1.95 and Ce0.85Nd0.15O1.925 electrolytes, respectively. The average grain size was found to be in the range of 0.3–0.6 μm for gadolinium doped ceria and 0.2–0.4 μm for neodymium doped ceria. The uniformly fine crystallite sizes (average 12–13 nm) of the ultrasound assisted prepared powders enabled sintering of the samples into highly dense (over 95%) ceramic pellets at 1200 °C (5 °C min?1) for 6 h.  相似文献   

11.
Phase transformations in ZrO2 + xSc2O3 solid solutions (6.5 < x < 11 mol%) at sintering of ceramics obtained from nanopowders produced by laser evaporation of the ceramic targets have been studied. The Sc2O3 concentration increasing from 6.5 to 11 mol% is accompanied by the sintering temperature decreasing and the average grain size growth from 130 nm to 760 nm. At concentration of about 7 mol% Sc2O3 an abrupt increase of the average grain size and electric conductivity is observed. The sinterability of the ZrO2  хSc2O3 ceramics is affected by the prehistory of nanopowders preparation. The characteristics of ceramics obtained from nanopowders evaporated from the targets based on (ZrO2 + xmol% Sc2O3) mixture and on the (ZrO2  11mol% Sc2O3) solid solution significantly differ, namely, in the latter the sintering temperature is markedly lower and the shrinkage rate is higher. Besides, its average grain size is substantially lower and the conductivity is higher.  相似文献   

12.
《Ceramics International》2017,43(6):4904-4909
Zr substituted Bi0.9Dy0.1Fe1−xZrxO3 (x=0.03, 0.06 and 0.10) multiferroic ceramics were synthesized by rapid liquid phase sintering technique to improve its multiferroic properties. Rietveld structural refinement of XRD patterns and Raman spectra revealed a partial structural phase transition from rhombohedral (R3c) to biphasic structure (R3c+P4mm) on codoping. The substitution of larger ionic radii and higher valence Zr4+ ions at Fe-site leads to decrease in the grain size as a result of charge compensation at Fe site. The weak ferromagnetic behavior were observed in all samples along with maximum Mr value of 0.159 emu/g for x=0.03 concentration, which is also endorsed by second order Raman modes. The distortion in FeO6 octahedra due to Zr substitution leads to splitting of electronic bands of 3.2 eV into multiplets, which in turn reduced the optical band gap value in the range of 2.06–2.10 eV for all samples.  相似文献   

13.
In the present study, the effect of TiO2 doping on (1 ? x) Bi2O3 (x)TiO2 (x = 0.05, 0.10, 0.15, 0.20) materials is investigated using X-ray diffraction (XRD), differential thermal analysis (DTA), ac conductivity, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). XRD results show the formation of single phase Bi12TiO20 at x  0.15 concentration of TiO2. It is observed that, the lower concentration of TiO2 leads to the formation of mixed phase. The x = 0.15 and x = 0.20 samples exhibit regular and uniform distribution of the grains as compared to x = 0.10 sample. The highest conductivity is observed for x = 0.15 specimen, e.g., 9 × 10?7 S cm?1.  相似文献   

14.
The intermediate temperature electrolytes La1?xSrxGa1?yMgyO3?δ (LSGM, where δ = (x + y)/2) with perovskite structure were prepared using a poly(vinyl alcohol) (PVA) solution polymerization method. Three secondary phases were identified by X-ray diffraction, LaSrGaO4, LaSrGa3O7 and La4Ga2O9. The relative amount of these secondary phases depended on the doping compositions. Sr doping produced more Sr rich secondary phases with increasing content, while enhanced solid solubility was observed with Mg addition. Sintered samples showed dense microstructures with well-developed equiaxed grains, and the secondary phases were mainly in the grain boundaries. LaSrGaO4 could not be detected by SEM for the sintered pellets. The oxygen ionic conductivity was enhanced by doping with Sr and Mg. Mg doping showed the increased conductivity activation energy. La0.8Sr0.2Ga0.9Mg0.1O2.85 had the highest ionic conductivity σ = 0.128 S/cm at 800 °C in this work.  相似文献   

15.
A series of Zr1-xNd xO2-x/2 (0  x  1) ceramics was prepared by solid-state reaction method. The effects of Nd content on the phase evolution were investigated. The chemical durability of resulting waste forms was also examined. The results show that the ceramics with x < 0.1 show monoclinic and cubic zirconia phase, with 0.2  x < 0.4 exhibit a single cubic phase, with 0.4  x  0.6 exhibit a single pyrochlore phase, with 0.6 < x < 0.8 exhibit a single cubic phase and remain cubic phases and hexagonal Nd2O3 when 0.8  x  1. The unit cell parameters of the Nd-doped zirconia samples increase as the Nd content increases. Moreover, the normalized element release rates of Nd element in Nd-doped zirconia ceramics firstly decrease with leaching time and almost no change after 21 days (∼0−6 g m−2 d−1), demonstrating its good chemical durability.  相似文献   

16.
《Ceramics International》2016,42(6):7270-7277
La0.9Sr0.1Ga0.8Mg0.2O3−δ solid electrolytes were consolidated by fast firing aiming to investigate the effects of the sintering method on densification, microstructure and ionic conductivity. Powder mixtures were prepared by solid state reaction at 1250 and 1350 °C for 12 h, and fast fired at 1450 and 1500 °C temperatures for 5 and 10 min. The content of impurity phases was found to be quite low with this sintering method. Relatively high density (>90% of the theoretical value) and low porosity (<1.5%) were readily obtained for powder mixtures calcined at 1250 °C. The activation energy for conduction was approximately 1 eV. Specimens fast fired at 1450 °C for 10 min with a mean grain size of 2.26 µm reached the highest value of total ionic conductivity, 22 mS cm−1, at 600 °C.  相似文献   

17.
The effect of Er3+ doping on the structure and thermoelectric transport properties of CdO ceramics was investigated. The solubility limit of Er3+ in CdO was very small and that additions of more than about 0.5 at% Er3+ resulted in the presence of Er2O3. With the addition of Er3+, the average grain size of Cd1?xErxO (0  x  0.015) decreased and the carrier concentration as well as mobility increased at room temperature. A small amount of Er3+ doping resulted in a marked increase of electric conductivity and a moderate decrease of Seebeck coefficient. Although Er3+ doping also leaded to an increase in thermal conductivity, a large ZT of 0.2 was achieved in x = 0.005 sample at 723 K due to the obvious improvement of power factor. The results demonstrate that CdO:Er is a new promising n-type thermoelectric material.  相似文献   

18.
A series of transparent ceramics with the composition of La2−xLuxZr2O7 (x = 0−2.0) were prepared by solid-state reactive sintering in vacuum. With the increase of Lu content (x), phase transition from pyrochlore to defective fluorite occurred and a two-phase region existed in the range of x = 0.6−1.2. Grain sizes of the pyrochlore phase dominated samples (x < 0.5) were 11−14 μm, and that of the defective fluorite phase dominated samples were larger than 60 μm. However, grain sizes of the samples in the two-phase region were smaller than 3 μm. The La0.8Lu1.2Zr2O7 ceramic with the smallest grain size (∼2.5 μm) reached a highest in-line transmittance of 72.4% at 1100 nm among all the samples.  相似文献   

19.
《Ceramics International》2015,41(8):9514-9520
Highly nitrogen-deficient non-stoichiometric TiNx powders within nitrogen vacancy defects (0.3<x<0.5) were prepared by mechanical alloying and consolidated by high pressure sintering. The effects of nitrogen vacancy defects, sintering temperature and pressure on densification and grain growth of TiNx were investigated for improving sintering ability and mechanical properties. Increasing nitrogen vacancy defects promoted densification and grain growth of TiNx. Nitrogen vacancies accelerated material transport and diffusion during sintering and altered strong covalent bonding nature was believed to result in enhanced sintering ability. Densification of TiNx was enhanced by increasing temperature and elevating pressure, grain growth was promoted by increasing temperature, whereas restrained by elevating pressure. TiNx (x=0.32) ceramic with relative density of 99.4% and average grain size of 21 nm was obtained at 1200 °C, 5 GPa and 10 min. Vickers hardness of 22.6 GPa and fracture toughness of 5.0 MPa m1/2 were achieved.  相似文献   

20.
The morphological, compositional, structural, dielectric and electrical properties of Bi1.5Zn0.92Nb1.5?xSnxO6.92?x/2 ceramics have been investigated by means of scanning electron microscopy (SEM), X-ray energy dispersion spectroscopy (EDS), X-ray diffraction (XRD), temperature and frequency dependent dielectric constant and temperature dependent conductivity measurements for Sn-contents in the range of 0.00  x  0.60. It was shown that single phase of the pyrochlore ceramics can only be obtained for x  0.25. Above this value a ZnO phase appeared in the XRD patterns and SEM micrographs as well. An increase in the lattice constant and in the temperature coefficient of dielectric constant and a decrease in the dielectric constant values with increasing Sn content was observed for the ceramics which exhibited a single phase formation. A temperature dependent but frequency invariant dielectric constant was observed for this type of ceramics. The lowest electrical conductivity and highest dielectric constant was observed for the sample which contains 0.06 Sn. The Bi1.5Zn0.92Nb1.5?xSnxO6.92?x/2 pyrochlore ceramic conductivities are thermally active above 395 K. For temperatures greater than 395 K, the conductivity activation energy which was found to be 0.415 eV for the pure sample increased to 1.371 eV when sample was doped with 0.06 Sn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号