首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2016,42(12):13888-13892
A comparative analysis of the efficiency of zirconia ceramics sintering by thermal method and high-energy electron beam sintering was performed for compacts prepared from commercial TZ-3Y-E grade powder. The electron energy was 1.4 MeV. The samples were sintered in the temperature range of 1200–1400 °C. Sintering of zirconia ceramics by high-energy accelerated electron beam is shown to reduce the firing temperature by about 200 °C compared to that in conventional heating technique. Ceramics sintered by accelerated electron beam at 1200 °C is of high density, microhardness and smaller grain size compared to that produced by thermal firing at 1400 °C. Electron beam sintering at higher temperature causes deterioration of ceramics properties due to radiation-induced acceleration of high-temperature recrystallization at higher temperatures.  相似文献   

2.
A homogeneous KNbO3 (KN) phase was formed in specimens that were sintered at 1020 °C and 1040 °C, without formation of the K2O-deficient secondary phase, indicating that the amount of evaporation of K2O during sintering was very small. However, the KN liquid phase was formed during sintering and assisted the densification of the KN ceramics. A dense microstructure was developed in the specimen sintered at 1020 °C for 6 h and abnormal grain growth occurred in this specimen. A similar microstructure was observed in the specimens sintered at 1040 °C for 1.0 h. The dielectric and piezoelectric properties of the KN ceramics were considerably influenced by the relative density. The KN ceramics sintered at 1020 °C for 6 h, which showed a large relative density that was 95% of the theoretical density, exhibited promising electrical properties: ɛT33/ɛo of 540, d33 of 109 pC/N, kp of 0.29, and Qm of 197.  相似文献   

3.
Unique porous SiC ceramics with a honeycomb structure were fabricated by a sintering-decarburization process. In this new process, first a SiC ceramic bonded carbon (SiC/CBC) is sintered in vacuum by spark plasma sintering, and then carbon particles in SiC/CBC are volatized by heating in air at 1000 °C without shrinkage. The honeycomb structure has at least two different sizes of pores; ∼20 μm in size resulting from carbon removal; and smaller open pores of 2.1 μm remaining in the sintered SiC shell. The total porosity is around 70% and the bulk density is 0.93 mg/m3. The bending and compressive strengths are 26 MPa, and 105 MPa, respectively.  相似文献   

4.
《Ceramics International》2017,43(4):3647-3653
This study investigated the effect of sintering temperature on the microstructure and mechanical properties of dental zirconia-toughened alumina (ZTA) machinable ceramics. Six groups of gelcast ZTA ceramic samples sintered at temperatures between 1100 °C and 1450 °C were prepared. The microstructure was investigated by mercury intrusion porosimetry (MIP), X-ray diffraction (XRD), and scanning electron microscopy (SEM) techniques. The mechanical properties were characterized by flexural strength, fracture toughness, Vickers hardness, and machinability. Overall, with increasing temperature, the relative density, flexural strength, fracture toughness, and Vickers hardness values increased and more tetragonal ZrO2 transformed into monoclinic ZrO2; on the other hand, the porosity and pore size decreased. Significantly lower brittleness indexes were observed in groups sintered below 1300 °C, and the lowest values were observed at 1200 °C. The highest flexural strength and fracture toughness of ceramics reached 348.27 MPa and 5.23 MPa m1/2 when sintered at 1450 °C, respectively. By considering the various properties of gelcast ZTA that varied with the sintering temperature, the optimal temperature for excellent machinability was determined to be approximately 1200–1250 °C, and in this range, a low brittleness index and moderate strength of 0.74–1.19 µm−1/2 and 46.89–120.15 MPa, respectively, were realized.  相似文献   

5.
《Ceramics International》2017,43(5):4570-4575
Novel monoclinic Bi2O3-xRE2O3-yMoO3 (RE=Pr, Nd, Sm, and Yb) based low temperature co-fired ceramics (LTCC) systems with high sintering density and low microwave dielectric loss are synthesized by conventional solid state reaction technique. The structure and dielectric properties of Bi2O3-xRE2O3-yMoO3 ceramics are investigated. Dense BiNdMoO6 ceramics sintered at 900 °C for 8 h in air have a low dielectric constant εr=~7.5, a high quality factor Q×f=~ 24, 800 GHz at 7.0 GHz, and τf=~−16 ppm/̊C. Especially, good chemical compatibility of BiNdMoO6 with Ag electrodes is represented as well. In contrast, BiSmMoO6 ceramics sintered at 1000 °C for 8 h show enhanced Q×f=~43, 700 GHz at 7.8 GHz with εr=~8.5 and τf=~−27 ppm/°C. Bi2O3-xRE2O3-yMoO3 (RE=Pr, Nd, Sm, and Yb) based ceramics could be considered as promising microwave ceramics for LTCC applications.  相似文献   

6.
Experiments have been performed to show that the mechanical properties of alumina porous ceramics may be improved by introducing glycerol into the raw slurries and then casting them under a constant cooling rate. The effects of glycerol on the freeze casting process and thereby on the microstructure and mechanical properties of porous ceramics obtained are investigated. It is shown that the addition of glycerol will increase both the slurry viscosity and sample sintered density. SEM images for microstructure of the final ceramics reveal that a good connection between ceramic lamellae has been promoted. This connection makes as-prepared porous ceramics obtain high mechanical properties. For the 30 vol.% alumina slurry with glycerol, the axial and radial compression strengths reach to, respectively, 255.1 MPa and 105.8 MPa.  相似文献   

7.
CaTiO3 ceramics with the addition of CaO-B2O3-SiO2 (CBS) glass (45–55 wt%) composites were sintered at 830 °C, 850 °C, 875 °C and 900 °C. To illustrate influence mechanism of the different glass contents and sintering temperatures on the properties of the composites, we focused on the multiple performances of the composites by employing different qualitative and quantitative instruments. Composites with 50 wt% glass sintered at 875 °C presented fairly ideal performance: the bulk density was 3.20 g/cm3, the dielectric constant was 25.7 and the dielectric loss was 0.0009 at 7 GHz. Micro-Structure analysis of the composites showed a dense and pore-less microstructure except for few pores with size around 1 μm. In addition, the composite could meet the shrinkage requirement of Ag electrodes and could not possibly react with Ag electrodes any more. This makes them suitable for various dielectric applications at low sintering temperature.  相似文献   

8.
The structural and morphological evolutions of cordierite-based ceramics produced from stevensite/andalusite mixture sintered from 1150 to 1350 °C were studied using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The mechanical behavior was investigated by three-point bending and Brazilian tests. The elastic properties were evaluated using ultrasonic non-destructive testing (NDT). XRD results revealed that the main crystalline phase formed at 1300 and 1350 °C was cordierite with traces of mullite. A linear-elastic behavior followed by brittle fracture was observed in three-point bending test with the presence of multiple discontinuities. Flexural and diametral compression strength values of cordierite sintered at 1300 °C were 39.4±4 and 21.8±2 MPa, respectively. The elastic properties such as Young's modulus (38.7–45.1 GPa), shear modulus (17.90–19.42 GPa) and Poisson ratio (0.08–1.6) of cordierite-based ceramics produced at 1350 and 1300 °C were also determined.  相似文献   

9.
《Ceramics International》2015,41(6):7897-7902
The piezoelectric and dielectric properties of the (1−x)(Bi,Na)TiO3x(Bi,K)TiO3 (x=0.12, 0.14, 0.18, 0.20 and 0.30) lead-free ceramics were investigated. Specimens were prepared by the conventional mixed oxide method and sintered at 1170 °C in air. Scanning electron microscopy indicated that increasing x from 0.12 to 0.30 causes a decrease in the grain size. The (1−x)(Bi,Na)TiO3x(Bi,K)TiO3 ceramics shows a homogeneous microstructure and excellent dielectric and piezoelectric properties. Specimens with optimum composition showed a piezoelectric charge constant d33 of 166 pC/N, an electromechanical coupling factor kp of 0.5, a dielectric constant εr of 1591.32 at 1 kHz and generated power output of 37.49 nW/cm2.  相似文献   

10.
The influence of binder burnout atmosphere (air or N2) on surface chemistry of thermo-chemically treated AlN powders processed in aqueous media, and on the final properties of AlN ceramics was studied. The surface chemistry after de-waxing was accessed by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). X-ray diffraction (XRD), SEM, high-resolution transmission electron microscopy (HR-TEM), were used to identify the phase assemblage and for microstructural analysis. The effects of the residual carbon and oxygen at the surface on the thermal conductivity and sintered density of AlN samples were investigated. The surface C/O ratios were observed to correlate with the sintering behaviour, the composition and distribution of secondary phases, and grain-boundary composition, as well as thermal conductivity of AlN samples. Thermal conductivities of about 140 W/mK were obtained for the aqueous processed AlN samples de-waxed in nitrogen atmosphere and sintered for 2 h at 1750 °C in the presence of 4 wt.% YF3 + 2 wt.% CaF2 as sintering additives.  相似文献   

11.
《Ceramics International》2017,43(18):16430-16435
For recycling waste refractory materials in metallurgical industry, porous alumina ceramics were prepared via pore forming agent method from α-Al2O3 powder and slide plate renewable material. Effects of slide plate renewable material (SPRM) on densification, mechanical strength, thermal conductivity, phase composition and microstructure of the porous alumina ceramics were investigated. The results showed that SPRM effectively affected physical and thermal properties of the porous ceramics. With the increase of SPRM, apparent porosity of the ceramic materials firstly increased and then decreased, which brought an opposite change for the bulk density and thermal conductivity values, whereas the bending strength didn’t decrease obviously. The optimum sample A2 with 50 wt% SPRM introducing sintered at 1500 °C obtained the best properties. The water absorption, apparent porosity, bulk density, bending strength and thermal conductivity of the sample were 31.7%, 62.8%, 1.71 g/cm3, 47.1 ± 3.7 MPa and 1.73 W/m K, respectively. XRD analysis indicated that a small quantity of silicon carbide and graphite in SPRM have been oxidized to SiO2 during the firing process, resulting in rising the porous microstructures. SEM micrographs illustrated that rod-like mullite grains combined with plate-like corundum grains to endow the samples with high bending strength. This study was intended to confirm the preparation of porous alumina ceramics with high porosity, good mechanical properties and low thermal conductivity by using SPRM as pore forming additive.  相似文献   

12.
Zirconia toughened alumina (ZTA) is one of the leading engineering ceramics; it is used in a wide range of components and products in applications for which high strength, high toughness, and high temperature stability are needed. The particle-stabilized direct foaming method has lately become a subject of particular interest. Nevertheless only a few studies on combining ZTA ceramics and particle-stabilized direct foaming have been reported. Therefore, in this study, ultra-low density ZTA foams having single strut wall thickness, cell size ranging from 80 μm to 200 μm, and above 90% porosity were successfully fabricated via the particle-stabilized direct foaming method. Valeric acid was used as particle surface modifier to render the particles partially hydrophobic, which stabilized the air/water interface of the ZTA foams. The sintered foams maintained compressive strength up to 8 MPa with porosity of 90%.  相似文献   

13.
《Ceramics International》2016,42(3):4221-4227
Spark plasma sintering (SPS) is a powerful technique to produce fine grain dense ferrite at low temperature. This work was undertaken to study the effect of sintering temperature on the densification, microstructures and magnetic properties of magnesium ferrite (MgFe2O4). MgFe2O4 nanoparticles were synthesized via sol–gel self-combustion method. The powders were pressed into pellets which were sintered by spark plasma sintering at 700–900 °C for 5 min under 40 MPa. A densification of 95% of the theoretical density of Mg ferrite was achieved in the spark plasma sintered (SPSed) ceramics. The density, grain size and saturation magnetization of SPSed ceramics were found to increase with an increase in sintering temperature. Infrared (IR) spectra exhibit two important vibration bands of tetrahedral and octahedral metal-oxygen sites. The investigations of microstructures and magnetic properties reveal that the unique sintering mechanism in the SPS process is responsible for the enhancement of magnetic properties of SPSed compacts.  相似文献   

14.
The TiO2 ceramics were prepared by a solid-state reaction in the temperature range of 920–1100 °C for 2 h and 5 h using TiO2 nano-particles (Degussa-P25 TiO2) as the starting materials. The sinterability and microwave properties of the TiO2 ceramics as a function of the sintering temperature were studied. It was demonstrated that the rutile phase TiO2 ceramics with good compactness could be readily synthesized from the Degussa-P25 TiO2 powder in the temperature range of 920–1100 °C without the addition of any glasses. Moreover, the TiO2 ceramics sintered at 1100 °C/2 h and 920 °C/5 h demonstrated excellent microwave dielectric properties, such as permittivity (Ɛr) value >100, Q × f  > 23,000 GHz and τf  200 ppm/°C.  相似文献   

15.
This paper proposed a two-stage thermal processing method combined with the reduction-reoxidation procedure. Samples were firstly sintered in a reducing atmosphere by two stages and then reoxidized in air. Such two-stage thermal processing method was used to adjust density and grain size of ceramics separately. Finally, nanocrystalline semiconducting donor-doped BaTiO3 ceramics were first successfully prepared. Samples with average grain size of 340 nm exhibited unexpectedly low room resistivity of 136 Ω cm and a significant PTCR effect, with a resistance jump of 4 orders of magnitude. In addition, depletion layer thickness of 40 nm and surface acceptor-state densities of 9.52 × 1013 cm−2 were also calculated. Such good properties had not been reported in former publications. It also means that smaller components based on semiconducting BaTiO3 ceramics could be produced and more extensive application field could be proposed in the trend of miniaturization of electronic devices.  相似文献   

16.
《Ceramics International》2015,41(6):7645-7650
Nano-sized ZnTiTa2O8 powders with ixiolite structure, with particle sizes ranging from 10 nm to 30 nm, were synthesized by thermal decomposition at 950 °C. The precursors were obtained by aqueous sol–gel and the compacted and sintered ceramics with nearly full density were obtained through subsequent heat treatment. The microstructure and electrical performance were characterized by field emission scanning electron microscopy, x-ray diffraction, and microwave dielectric measurements. All the samples prepared in the range 950–1150 °C exhibit single ixiolite phase and relative density between ~87% and ~94%. The variation of permittivity and Q·ƒ value agreed with that of the relative density. Pure ZnTiTa2O8 ceramic sintered at 1050 °C for 4 h exhibited good microwave dielectric properties with a permittivity of 35.7, Q·ƒ value of 57,550 GHz, and the temperature coefficient of resonant frequency of about −24.7 ppm/°C. The relatively low sintering temperature and excellent dielectric properties in the microwave range would make these ceramics promising for applications in electronics.  相似文献   

17.
《Ceramics International》2017,43(5):4450-4455
In the present study, lead-lanthanum-zirconate-titanate (PLZT) ceramics were prepared by a solid-state mixed oxide method. Different amount of lithium carbonate and bismuth oxide (0.15 mol%, 0.45 mol% and 0.75 mol%), where the ratio of Li:Bi =1:1 by mole, was added to PLZT to investigate the effect of Li and Bi co-doping. The ceramic samples were sintered at the temperatures of 1000, 1050, 1100, 1150 and 1200 °C for 4 h. After that, all samples were subjected to phase identification, physical property determination (sintered density and microstructure) and dielectric property measurement. It was found that doping of 0.15 mol% Li and Bi resulted in maximum dielectric constant (εr =7819) when sintered at 1200 °C. Grain size of PLZT ceramics was dependent on sintering temperature and dielectric properties were affected by the chemical composition rather than the grain size of the ceramics. Therefore, co-doping of Li and Bi was useful as it could improve the dielectric properties of PLZT ceramics.  相似文献   

18.
《Ceramics International》2016,42(7):7943-7949
This paper reports the investigation of the performance of Li2O–B2O3–SiO2 (LBS) glass as a sintering aid to lower the sintering temperature of BaO–0.15ZnO–4TiO2 (BZT) ceramics, as well as the detailed study on the sintering behavior, phase evolution, microstructure and microwave dielectric properties of the resulting BZT ceramics. The addition of LBS glass significantly lowers the sintering temperature of the BZT ceramics from 1150 °C to 875–925 °C. Small amount of LBS glass promotes the densification of BZT ceramic and improves the dielectric properties. However, excessive LBS addition leads to the precipitation of glass phase and growth of abnormal grain, deteriorating the dielectric properties of the BZT ceramic. The BZT ceramic with 5 wt% LBS addition sintered at 900 °C shows excellent microwave dielectric properties: εr=27.88, Q×f=14,795 GHz.  相似文献   

19.
《Ceramics International》2016,42(8):9887-9898
The aim of this study is to explore the influence of the processing route on the structural and physical properties of bulk MgTiO3 ceramics. Commercially available MgO and TiO2 powders were mechanically activated in a planetary ball mill. Green bodies were formed by an isostatic pressure of 300 MPa. The sintering of these samples was done either by the Two-Step Sintering (TSS) approach or by conventional pressureless sintering followed by Hot Isostatic Pressing (post-HIPing). The first set of compacts was sintered by TSS in air at 1300 °C for 30 min and the next step was performed at 1200 °C for 20 h. The density of the obtained samples after the two-step sintering reached almost 90% of the theoretical density (%TD). The second set of compacts was sintered at 1400 °C for 30 min in air. The samples without open porosity were post-sintered by the HIP at 1200 °C for 2 h in an argon atmosphere at a pressure of 200 MPa. The density significantly increased up to 96%TD. The differences between samples prepared by these two techniques were also analyzed by XRD and SEM. The lattice vibration spectra were obtained using Raman spectroscopy and they indicate a high degree of lattice disorder, as well as high values of the oxygen vacancy concentration. Electrical characteristic were established in the frequency range from 10 kHz to 10 GHz. The choice of the processing route had considerable influence on structural and physical properties of MgTiO3 ceramics.  相似文献   

20.
《Ceramics International》2016,42(15):17074-17080
The effects of Fe and SiC additions on the densification, microstructure, and ablation properties of ZrB2-based ceramics were investigated in this study. The sample powders were conventionally mixed by cemented carbide ball then sintered by spark plasma sintering. The ablation rates and behavior of the ceramics were investigated under an oxyacetylene torch environment at about 3000 °C. A sample with high relative density (96.3%), high flexural strength (415.6 MPa), and low linear ablation rate (−0.4 µm/s) was obtained via SPS at 1600 °C. Adding 4 vol% Fe was more beneficial to the density of ZrB2 sintered at 1600 °C as compared to ZrB2 sintered at 1800 °C. The ablation behavior and rates were similar among samples sintered at 1600 °C and 1800 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号