首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
《Ceramics International》2016,42(13):14299-14312
As one of the promising methods that can be employed to fabricate high-performance thermal barrier coatings (TBCs), suspension plasma spraying (SPS) or solution precursor plasma spraying (SPPS) has received significant attention in academic research. Enhanced performances have been shown in the SPS-/SPPS-coatings due to their special microstructures, such as uniformly distributed micro-pores, vertical cracks or columnar structures. Since there are more complexities than conventional plasma spraying methods, many works have been devoted to study the mechanism and properties of SPS-/SPPS-coatings during the past decades. In this work, the latest development of SPS or SPPS is reviewed in order to discuss some key issues in terms of preparation of suspension or solution precursor, injection mode of liquid phase, interaction between liquid and plasma jet, microstructure of as-sprayed coatings and corresponding deposition mechanism. Meanwhile, the potential application of SPS or SPPS in some new-type TBCs is introduced at the end of this paper.  相似文献   

2.
Structural and microstructural investigation of solution precursor plasma sprayed copper-doped hydroxyapatite coatings with different Cu dopant concentration was carried out. Scanning electron micrographs did not show any significant morphological changes at the surface and cross-section of the coatings as copper content increases. X-ray diffraction results showed the decrease in the HA phase content from 93 wt.% to 14 wt.% and its degree of crystallinity from 94% to 85% with increasing copper concentration. Raman and IR spectra revealed the broadening and red-shifting of the phosphate bands due to the distortion of the HA structure caused by possible insertion of copper. X-ray photoelectron spectroscopy identified Cu and Cu2+ as copper species incorporated in HA. Rietveld refinement showed an increase in the lattice a and c parameter and expansion of the unit cell volume associated to an interstitial insertion of Cu along the hexagonal channel of the HA structure.  相似文献   

3.
Hydroxyapatite coatings were deposited on stainless steel substrates. The arc current was varied to study its effect on the coating crystallinity. The crystallinity was calculated according to the XRD patterns via Jade 6.0 software and the full width at half maximum (FWHM) of Raman peak at 962 cm−1. The FE-SEM images showed that HA coatings had rod-like nanostructures and agglomerated into microspheres. The XRD patterns indicated that the as-sprayed coatings were composed of HA and some decomposition phases. Micro-Raman spectroscopies demonstrated that the main phase in the coatings was HA. The results showed that the crystallinity was increased from 68.68% to 76.84% while the FWHM varied from 9.74 to 6.38 cm−1, when the arc current increased from 400 A to 600 A. The selected area electron diffraction (SEAD) patterns were used to analyze the crystallinity qualitatively, and the results agreed with the conclusions of XRD and FWHM of Raman peak.  相似文献   

4.
This research focuses on the deposition of hydroxyapatite (HA) and tricalcium phosphate (TCP) coatings produced by suspension plasma spraying (SPS) using in-house liquid feedstock suspensions. The work studied the effects of torch speed on the thickness, microstructure, and crystalline composition of the coatings. SPS allowed the deposition of HA and TCP coatings with thickness between 28 and 90?μm. The coatings presented lamellar microstructure with complex porosity between the splats. Micropores ranging from 0.2 to 6?μm and close mesopores, from 8 to 45?μm, had a spherical morphology and were homogenously distributed within the coatings. Water evaporation during SPS allowed the retention of pure and crystalline HA coatings. In contrast, the presence of water molecules led to the formation of HA as a secondary phase in the TCP coatings, which formed α-TCP as the major component due to the high temperature reached by the powder during deposition.  相似文献   

5.
Thermal barrier coatings (TBCs) fabricated by suspension plasma spraying (SPS) have shown improved performance due to their low thermal conductivity and high durability along with relatively low production cost. Improvements in SPS TBCs that could further enhance their lifetime would lead to their widespread industrialisation. The objective of this study was to design a SPS TBC system with optimised topcoat microstructure and topcoat–bondcoat interface, combined with appropriate bondcoat microstructure and chemistry, which could exhibit high cyclic lifetime. Bondcoat deposition processes investigated in this study were high velocity air fuel (HVAF) spraying, high velocity oxy fuel spraying, vacuum plasma spraying, and diffusion process. Topcoat microstructure with high column density along with smooth topcoat–bondcoat interface and oxidation resistant bondcoat was shown as a favourable design for significant improvements in the lifetime of SPS TBCs. HVAF sprayed bondcoat treated by shot peening and grit blasting was shown to create this favourable design.  相似文献   

6.
Conventional and solution precursor plasma spraying (SPPS) techniques were employed for developing gadolinium oxide doped lanthanum cerate ((La0.9Gd0.1)2Ce2O7, Gd-LC) based double-layered thermal barrier coatings (TBCs). Hot corrosion studies of the above coatings were carried out in molten Na2SO4 + V2O5 (1:1) environment at 900 °C. The state-of-the-art yttria-stabilized-zirconia (YSZ) coating was found to be completely delaminated after 120 h by forming yttrium vanadate (YVO4) and m-ZrO2. The accelerated delamination of YSZ can be attributed to the undesired phase transformation during exposure to corrosive species. Double-layered APS coatings were found to last for more than 300 h without densification of underlying YSZ layer and also, show better adherence with bond coat. SPPS Gd-LC coatings were found to be completely delaminated on densifying the underlying YSZ within 300 h. Lanthanum vanadate (LaVO4) was found to be the main corrosive product along with minor amounts of gadolinium vanadate (GdVO4) in Gd-LC double-layer coatings.  相似文献   

7.
Brittleness, relative high friction coefficient and wear rate limit the applications of ceramic coatings as wear-resistant layers. However, because embedding additives with ceramic matrix has demonstrated to be an effective way to improve coating performances, different contents and size of h-BN were added into an YSZ suspension. Afterwards, the YSZ/h-BN composite coatings were manufactured by suspension plasma spray and their tribological analysis indicated that: i) the reduction of the friction coefficient and wear rate can be achieved by incorporating h-BN into YSZ coating. ii) finer h-BN particle is more helpful to enhance the tribological properties of the coating. iii) the optimum content is dependent on h-BN particle sizes. iv) when the contents and the size of the h-BN inclusion increase, the probability distribution of the micro-hardness can become bi-modal. Three worn surface conditions were summarized and their wear mechanisms were discussed as well.  相似文献   

8.
Axial plasma spray is one of the thermal spray techniques to deposit multifunctional advanced coatings. The present work explores the use of this process to deposit thin, continuous, and adherent Ca5 (PO4)3OH (hydroxyapatite, HAp) coatings and characterize its microstructure, phases, hardness and adhesion strength. Three different suspension-deposited HAp coatings were investigated and compared with powder-deposited HAp coating on a Ti6Al4V substrate. The effect of mean solute particle size and solid-loading in the suspension has been explored on the evolution of microstructure, phase content and mechanical properties of axial suspension plasma sprayed (ASPS) coatings. Phase-characterization has shown retention of hydroxyapatite phase and coating crystallinity in the deposited coatings, whereas the adhesion strength of the HAp coating decreased from ~40 MPa to ~13 MPa when bioglass was added to the feedstock material. The lower solid load content and lower mean solute particle size in the suspension were found to be beneficial in achieving porous, rougher, and well-adhering coatings. This work concludes that ASPS can potentially deposit thin HAp coatings (< 50 μm) with high adhesion strength.  相似文献   

9.
《Ceramics International》2020,46(9):13539-13548
Hydroxyapatite (HA) coatings, reinforced with varied concentration (0–2 wt%) of Graphene nanoplatelets (GNPs) have been deposited on titanium alloys (Ti–6Al–4V) substrate using atmospheric plasma spraying. Present work studies the effect of GNP concentration on the electrochemical behaviour of the HA coatings in simulated body fluid (SBF). The HA coating exhibited 15% porosity, whereas reinforcement of 1 wt% GNPs in HA (HA-1G) shows 13% porosity, further addition of 2 wt% GNPs in HA reduced the porosity to 10%. Reduction in porosity was achieved as GNPs easily accessed the inter-lamellae to fill the gaps at inter splat region and minimized the occurrence of post-plasma spray defects such as porosity, voids, microcracks etc. These consequences nextward resulted in the significant enhancement in corrosion resistance of the matrix. HA-1G displayed a significant reduction by 67% in the corrosion rate in SBF solution, while this reduction came to 87% for HA-2G coatings. Randomly oriented wrinkles in the GNPs after corrosion process and their hydrophobic nature effectively hindered the SBF infiltration into the coating and resisted their movement towards the underlying substrate. This in turn improved the overall corrosion resistance of the system.  相似文献   

10.
This paper investigates the evolution of microstructure of thermal barrier coatings (TBCs) produced by suspension plasma spraying (SPS) through a careful experimental study. Understanding the influence of different suspension characteristics such as type of solvent, solid load content and median particle size on the ensuing TBC microstructure, as well as visualizing the early stages of coating build-up leading to formation of a columnar microstructure or otherwise, was of specific interest. Several SPS TBCs with different suspensions were deposited under identical conditions (same substrate, bond coat and plasma spray parameters). The experimental study clearly revealed the important role of suspension characteristics, namely surface tension, density and viscosity, on the final microstructure, with study of its progressive evolution providing invaluable insights. Variations in suspension properties manifest in the form of differences in droplet momentum and trajectory, which are found to be key determinants governing the resulting microstructure (e.g., lamellar/vertically cracked or columnar).  相似文献   

11.
This paper investigates the influence of suspension characteristics on microstructure and performance of suspensions plasma sprayed (SPS) thermal barrier coatings (TBCs). Five suspensions were produced using various suspension characteristics, namely, type of solvent and solid load content, and the resultant suspensions were utilized to deposit five different TBCs under identical processing conditions. The produced TBCs were evaluated for their performance i.e. thermal conductivity, thermal cyclic fatigue (TCF) and thermal shock (TS) lifetime. This experimental study revealed that the differences in the microstructure of SPS TBCs produced using varied suspensions resulted in a wide-ranging overall TBC performance. All TBCs exhibited thermal conductivity lower than 1 W/(m. K) except water-ethanol mixed suspension produced TBC. The TS lifetime was also affected to a large extent where 10 wt % solid loaded ethanol and 25 wt % solid loaded water suspensions produced TBCs exhibited the highest and the lowest lifetime, respectively. On the contrary, TCF lifetime was not as significantly affected as thermal conductivity and TS lifetime, and all ethanol suspensions showed marginally better TCF lifetime than water and ethanol-water mixed suspensions deposited TBCs.  相似文献   

12.
Titanium and its alloys are widely used for medical implant applications, but their corrosion in the physiological environment leads to the discharge of metal ions, which can trigger severe health issues. In the present study, calcium silicate reinforced hydroxyapatite (HA-CS) coatings were deposited on the Ti6Al4V substrate by using atmospheric plasma spray (APS) process with an aim to improve the corrosion resistance and bioactivity. The coatings were prepared by varying the weight percentage (wt %) of calcium silicate (CS) reinforcement in hydroxyapatite (HA) as Ha/x CS (x = 0, 10, 20 wt %). The SEM analysis of the pure HA coating revealed the presence of surface microcracks, whereas HA-CS coatings displayed the crack-free surface morphology. The corrosion investigation revealed that with the progressive increment of CS content in HA coating, the corrosion resistance of HA-CS coatings improved. In addition, surface roughness, porosity, microhardness and crystallinity increased with the increase of CS content in HA. The findings of this study indicate that the development of plasma sprayed HA-CS coatings is a promising approach to improve the performance of Ti6Al4V alloy for medical implant applications.  相似文献   

13.
Thermal spraying using liquid feedstock has emerged as a promising technology for the deposition of finely structured ceramic coatings. In order to provide a comparative assessment of the deposition mechanisms occurring when spraying suspension or solution feedstock, suspensions of 300 nm-sized ZrO2–4.5 mol.% Y2O3 particles dispersed in water and in ethanol and solutions of zirconium and yttrium salts, corresponding to ZrO2–4.5 mol.% Y2O3 and ZrO2–8 mol.% Y2O3 stoichiometries, were processed by plasma spraying using different parameter settings. In-flight diagnostics of sprayed droplets, together with the morphological, microstructural and phase analysis of individual lamellae collected onto polished substrates, performed by SEM, FIB, AFM and micro-Raman spectroscopy, led to the identification of deposition mechanisms, which were subsequently verified through the characterisation of complete coating layers.  相似文献   

14.
To enhance the photocatalytic activity, sub-stoichiometric TiO2-x films were coated on stainless steel substrates by Suspension Plasma Spraying. Because the TiO2 particles are exposed to high temperature during deposition by plasma spray, TiO2-x coating are typically produced. To achieve different levels of oxygen vacancies, as-sprayed TiO2-x coatings were annealed at four different temperatures for 48 h in air. In this work, the degradation of methylene blue was performed to evaluate the photocatalytic activity under visible light. The results indicated that oxygen vacancy positively affects the photocatalytic activity of TiO2-x by introducing some energy levels into the bandgap of titania. Moreover, these energy levels could act as traps for photo-excited holes and electrons, reducing the recombination rate of charges, thus improving the photocatalytic activity under the visible lamp. Additionally, coatings were analyzed by X-ray diffraction, confocal laser microscopy, scanning electron microscopy, Raman spectroscopy, thermogravimetric analysis, Fourier-transform infrared spectroscopy, and UV–vis spectroscopy.  相似文献   

15.
Zircon is a ceramic material that decomposes at high temperature, limiting its use by conventional thermal spraying. In this work, it is intended to use thermal spraying from concentrated aqueous suspensions to evaluate the possibility of obtaining coatings in which a significant proportion of zircon could be preserved. For this purpose, stable concentrated suspensions of zircon have been prepared, which have been subsequently sprayed at two different spraying distances. The coatings were characterised in terms of microstructural features and the amount of zircon present in the coatings was quantified. All the coatings obtained display the typical microstructure derived from the deposition of liquid feedstocks by plasma spraying. In all cases, the XRD analysis demonstrates the partial decomposition of zircon into zirconia and residual silica, but also that a significant percentage (about 20%) is preserved without decomposing, which marks a strong difference with respect to reported data for atmospheric plasma spraying.  相似文献   

16.
介绍了溶液注入等离子喷涂技术(SPPS)在制备热障涂层领域的应用,分析了SPPS热障涂层的结构和性能特点,将该技术与其它工艺过程进行比较,指出了该技术的优势和未来发展方向。  相似文献   

17.
The present work represents a significant new approach in the field of thermal spraying to deposit nanostructured phase-pure α-Al2O3 coatings in a single step. In order to understand the mechanism of coating formation, a detailed investigation of in flight formed particles and splat morphologies has been carried out. A plausible deposition mechanism has been proposed based on the understanding derived from the above studies that can form the basis for developing novel ceramic coatings employing the solution precursor plasma spray technique.  相似文献   

18.
《Ceramics International》2015,41(6):7453-7460
Previously published results on electrical and mechanical properties of BaTiO3 coatings prepared by atmospheric plasma spraying showed anomalies in their dielectric response. This paper provides a study of electrical and mechanical properties of BaTiO3 coatings after thermal posttreatment. The spraying was carried out by a direct current gas-stabilized plasma gun. BaTiO3 was fed into the plasma jet as a feedstock powder prepared by reactive sintering of micrometer-sized powders of BaCO3 and TiO2. In the next step the coatings were annealed in air. Microstructure and phase composition are reported and discussed in relation to electric and mechanical properties. Dielectric properties are reported for the radio frequency (RF) range.  相似文献   

19.
《Ceramics International》2017,43(14):11189-11196
Coatings of hydroxyapatite (HAp) were prepared by plasma spraying with induction preheating of titanium substrate from 200 to 1000 °C. The combination of conventional plasma spraying and induction preheating ensured high mechanical properties of HAp coatings. The coatings produced in the temperature range 400–600 °C were characterized by homogeneous nanostructure of splats with an average grain size of 12–31 nm. According to the results of nanoindentation HAp coatings with high hardness 0.9–1.2 GPa and elastic modulus 7–16 GPa were formed on the titanium.  相似文献   

20.
In this work, suspension plasma spraying (SPS) with different hydrogen (H2) flow rates was employed to produce TiO2 coatings with various phase contents, oxygen contents, and roughnesses. To eliminate the role of the morphology and oxygen content on the photocatalytic activity, all coatings were polished to reach the same roughness followed by heat-treatment at 550 °C in air for 48 h. Then coatings were analyzed by X-ray diffractometer (XRD), confocal laser microscope, scanning electron microscope (SEM), UV–visible spectrometer, Raman microscope, and thermogravimetric analyzer. The XRD data indicated that the percentage of anatase decreased as function of H2 flow rates, and almost 46% of anatase transformed to rutile during SPS process at the highest H2 flow rate. Moreover, the photocatalytic performance was evaluated by monitoring the degradation of methylene blue under visible light irradiation, and the results indicated that anatase phase positively enhances the photocatalytic activity of TiO2 coatings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号