首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Poly(methyl methacrylate)-grafted polyethylene (PE-g-PMMA) separators were prepared by pre-irradiation grafting technique of methyl methacrylate onto a commercial polyethylene separator. The prepared separators were characterized by using charge/discharge (C/D) cycling test, AC impedance, and thermal stability analyses. Thermal shrinkage (TS) of the PE-g-PMMA separators decreased with an increasing degree of grafting up to 70% above which it was saturated. The PE-g-PMMA separators showed a better oxidation stability on the anode up to 5 V and a better cycle life performance than the original PE separator. These characteristics make the prepared separators suitable for applications in high voltage secondary lithium batteries.  相似文献   

2.
《Ceramics International》2017,43(5):4023-4028
In this Part 2, the ionic conductivity of molten salt electrolytes, the electrochemical properties of single cells containing a ceramic separator infiltrated with an electrolyte, and the mechanical strength of the electrolyte layer are compared with those of the conventional pellet-pressed structure. The ionic conductivity for the molten electrolyte is higher than that of the previous report for both LiCl-KCl and LiF-LiCl-LiBr electrolytes, which is explained by the decrease in contact resistance using a graphite electrode instead of stainless steel. The electrochemical performance of the single cells containing a ceramic felt separator assembled with Li(Si)/FeS2 electrodes shows longer operating time to a cut off voltage of 1.3 V compared to the conventional MgO-contained single cell. In addition, the flexural strength of the electrolyte layer with the ceramic felt separators is in the range of 2.80–6.29 kgf cm−2, which is incomparable to that (=0.01 kgf cm−2) of the pellet-pressed conventional separator. These findings suggest that the ceramic felt separator can be an alternative to mitigate the current problems of pellet-pressed structure in thermal batteries, enhancing the mechanical strength and electrochemical properties.  相似文献   

3.
A simple approach is reported to prepare carbon-coated SnO2 nanoparticle–graphene nanosheets (Gr–SnO2–C) as an anode material for lithium ion batteries. The material exhibits excellent electrochemical performance with high capacity and good cycling stability (757 mA h g?1 after 150 cycles at 200 mA g?1). The likely contributing factors to the outstanding charge/discharge performance of Gr–SnO2–C could be related to the synergism between the excellent conductivity and large area of graphene, the nanosized particles of SnO2, and the effects of the coating layer of carbon, which could alleviate the effects of volume changes, keep the structure stable, and increase the conductivity. This work suggests a strategy to prepare carbon-coated graphene–metal oxide which could be used to improve the electrochemical performance of lithium ion batteries.  相似文献   

4.
Porous nitrogen-doped carbon vegetable-sponges (N-DCSs) have been fabricated by chemical treatment of the Cu@C precursors using HNO3 for the first time. The obtained N-DCSs are porous three-dimensional (3D)-structure and similar to numerous agglomerated fluffy micro-vegetable-sponges. When the precursors are treated by H2SO4, carbon vegetable-sponges (CSs) without nitrogen doping are prepared. As anode materials in lithium ion batteries, the as-prepared N-DCSs show improved Li-storage capacity and cycling stability as compared with the pure CSs. They offer 870 mA h g−1 at 0.5 A g−1 after 300 cycles and high reversible capacity with 910 mA h g−1 at 0.2 A g−1 after cycled at different current densities, which are much higher than those of CSs. It is envisaged that the large surface area, unique 3D porous nanostructure and appropriate nitrogen doping are favorable for the superior electrochemical properties of N-DCSs.  相似文献   

5.
《Ceramics International》2016,42(9):10826-10832
ZnO–SnO2 composite nanofibers with different structures were synthesized by a simple electrospinning approach with subsequent calcination at three different temperatures using polyacrylonitrile as the polymer precursor. The electrochemical performance of the composites for use as anode materials in lithium-ion batteries were investigated. It was found that the ZnO–SnO2 composite nanofibers calcined at 700 °C showed excellent lithium storage properties in terms of cycling stability and rate capability, compared to those calcined at 800 and 900 °C, respectively. ZnO–SnO2 composite nanofibers calcined at 700 °C not only delivered high initial discharge and charge capacities of 1450 and 1101 mAh g−1, respectively, with a 75.9% coulombic efficiency, but also maintained a high reversible capacity of 560 mAh g−1 at a current density of 0.1 A g−1 after 100 cycles. Additionally, a high reversible capacity of 591 mAh g−1 was obtained when the current density returned to 0.1 A g−1 after 50 cycling at a high current density of 2 A g−1. The superior electrochemical performance of ZnO–SnO2 composite nanofibers can be attributed to the unique nanofibrous structure, the smaller particle size and smaller fiber diameter as well as the porous structure and synergistic effect between ZnO and SnO2.  相似文献   

6.
Uniform and small Fe3O4 nanocrystals (∼9 nm) encapsulated in interconnected carbon nanospheres (∼60 nm) for a high-rate Li-ion battery anode have been fabricated by a one-step hydrothermal process followed by annealing under Ar, which can be applied for the preparation of a number of metal oxide nanocrystals encapsulated in interconnected carbon nanospheres. The as-synthesized interconnected Fe3O4@C nanospheres displayed high performance as an anode material for Li-ion battery, such as high reversible lithium storage capacity (784 mA h/g at 1 C after 50 cycles), high Coulombic efficiency (∼99%), excellent cycling stability, and superior rate capability (568 mA h/g at 5 C and 379 mA h/g at 10 C) by virtue of their unique structure: the nanosized Fe3O4 nanocrystals encapsulated in interconnected conductive carbon nanospheres not only endow large quantity of accessible active sites for lithium ion insertion as well as good conductivity and short diffusion length for lithium ion transport but also can effectively circumvent the volume expansion/contraction associated with lithium insertion/extraction.  相似文献   

7.
《Ceramics International》2017,43(13):9945-9950
Co3O4, as a promising anode material for the next generation lithium ion batteries to replace graphite, displays high theoretical capacity (890 mAh g−1) and excellent electrochemical properties. However, the drawbacks of its poor cycle performance caused by large volume changes during charge-discharge process and low initial coulombic efficiency due to large irreversible reaction impede its practical application. Herein, we have developed a porous hollow Co3O4 microfiber with 500 nm diameter and 60 nm wall thickness synthesized via a facile chemical precipitation method with subsequent thermal decomposition. As an advanced anode for lithium ion batteries, the porous hollow Co3O4 microfibers deliver an obviously enhanced electrochemical property in terms of lithium storage capacity (1177.4 mA h g−1 at 100 mA g−1), initial coulombic efficiency (82.9%) and cycle performance (76.6% capacity retention at 200th cycle). This enhancement could be attributed to the well-designed microstructure of porous hollow Co3O4 microfibers, which could increase the contact surface area between electrolyte and active materials and accommodate the volume variations via additional void space during cycling.  相似文献   

8.
The continuous enantioselective liquid–liquid extraction of aqueous 3,5-dinitrobenzoyl-(R),(S)-leucine (AR,S) using O-(1-t-butylcarbamoyl)-11-octadecylsulfinyl-10,11-dihydro-quinine (C, a cinchona alkaloid) as extractant in 1,2-dichloroethane (DCE) was studied experimentally in a countercurrently operated pilot scale cascade of six centrifugal contactor separators (CCS) at 294 K. The extractant was efficiently recovered by back-extraction in a single CCS allowing the cascade to be run continuously for 10 h. The steady-state ee of AR (eeR) in the raffinate was 42% at a 99% yield, the AS was obtained with high purity (98% eeS) and a yield of 55% in the back-extraction raffinate. In total 2.23 g of AS was obtained at steady-state operation from 8.11 g racemate feed. Deterioration of the ee in time was not observed, demonstrating the robustness of the chemistry. The experiments were modeled using an equilibrium stage approach. The correlation between model and experiment was satisfactory. The model was applied to optimize the production of both enantiomers in >97% ee. At zero reflux, 12 stages are required for 99% ee for both enantiomers. Application of a reflux allows a 25% reduction of the total liquid flow through the system by reduction of the wash feed as well as a reduction in the number of stages from 12 to 11. With a configuration of 12 CINC-V02’s operating at an aqueous feed flow of 360 mL/min, the model predicts that 17.7 kg racemate per week may be separated into both enantiomers with 99% ee using only 60 g of extractant.  相似文献   

9.
《Ceramics International》2015,41(7):8533-8540
Graphene supported porous Si@C ternary composites had been synthesized by various routes and their structural, morphological and electrochemical properties were investigated. Porous Si spheres coated with carbon layer and supported by graphene have been designed to form a 3D carbon conductive network. Used as anode materials for lithium ion batteries, graphene supported porous Si@C ternary composites demonstrate excellent electrochemical performance and cycling stability. The first discharge capacity is 2184.7 mA h/g at a high current density of 300 mA/g. After 50 cycles, the reversible capacity is 652.4 mA h/g at a current density of 300 mA/g and the coulomb efficiency reaches at 98.7%. Due to their excellent electrochemical properties, graphene supported porous Si@C ternary composites can be a kind of promising anode materials for lithium ion batteries.  相似文献   

10.
《Ceramics International》2015,41(6):7511-7518
Core/shell-structured nanocapsules consisting of a nickel cobaltite (NiCo2O4) nanoparticle core encapsulated in an onion-like carbon (C) shell are synthesized by arc-discharge and air-annealing methods. Void spaces between NiCo2O4 core and the carbon shell are observed in the NiCo2O4/C nanocapsules. Lithium-ion batteries fabricated using the nanocapsules as the anode material exhibit enhanced initial coulombic efficiency of 82.3% and specific capacity of 1197.2 mA h/g after 300 cycles at 0.2 A g−1 current density. Varying the rate of charge/discharge current from 0.2 to 4 A/g does not show negative effects on the recycling stability of the nanocapsules and a recoverable specific capacity as high as 1270.4 mA h/g is obtained. The introduction of the onion-like C shell and the presence of the void spaces are found to increase the contact areas between the electrolyte and the nanocapsules for improved electrolyte diffusion, to enhance the electronic conductivity and ionic mobility of the NiCo2O4 nanoparticle cores, and to accommodate the change in volume during the lithium-ion insertion/extraction process.  相似文献   

11.
《Ceramics International》2017,43(14):11354-11360
Nitrogen-doped carbon-coated Li4Ti5O12-TiO2 (LTO-TO) hybrid microspheres were prepared by heat treating the dry mixture of urea and chemically lithiated dandelion-like TiO2 microspheres in a stainless steel autoclave at 550 °C for 5 h. The hybrid materials were tested as anode of Li-ion batteries. As compared to the pristine sample, the N-doped carbon-coated LTO-TO microspheres exhibited higher specific capacity at both low and high current rates. Discharge capacities of 184 and 123 mAh g−1 were obtained at 0.2 C and 20 C, respectively. Moreover, the LTO-TO/C electrode showed excellent cycle performance, with a discharge capacity of 121.3 mAh g−1 remained after 300 cycles at 5 C, corresponding to an average capacity degradation rate of 0.073% per cycle. These high specific capacity, excellent rate capability and cycle performance demonstrated the high potentiality of the N-doped carbon-coated LTO-TO microspheres as anode material of both energy storage-type and power-type Li-ion batteries.  相似文献   

12.
《Ceramics International》2016,42(15):16557-16562
A novel Li3V2(PO4)3 composite modified with Fe-doping followed by C+SiO2 hybrid layer coating (LVFP/C-Si) is successfully synthesized via an ultrasonic-assisted solid-state method, and characterized by XRD, XPS, TEM, galvanostatic charge/discharge measurements, CV and EIS. This LVFP/C-Si electrode shows a significantly improved electrochemical performance. It presents an initial discharge capacity as high as 170.8 mA h g−1 at 1 C, and even delivers an excellent initial capacity of 153.6 mA h g−1 with capacity retention of 82.3% after 100 cycles at 5 C. The results demonstrate that this novel modification with doping followed by hybrid layer coating is an ideal design to obtain both high capacity and long cycle performance for Li3V2(PO4)3 and other polyanion cathode materials in lithium ion batteries.  相似文献   

13.
Carbon nanowalls (CNWs) are suggested as a promising nanostructured substrate for 3D anodes of lithium-ion batteries. Silicon sputtering onto CNWs results in improved electrochemical performance due to either a large surface area of free-standing CNWs or easy adhesion of deposited silicon clusters via the SiC interface layer formation. The 3D silicon-decorated nanowall framework (SDNF) could give the possibility to minimize the lithium diffusion length and make charge collection more effective yielding better cycling performance at high rates exceeding 2000 mA h per 1 g of silicon in the range of 0.05–2.00 V at 1.5 C rate.  相似文献   

14.
《Ceramics International》2017,43(8):6089-6095
Orthorhombic structure LiMnPO4/C with space group Pnmb was synthesized using a microwave heating process in a chloride/ethylene glycol-based deep eutectic solvent (DES) at 130 °C for 30 min under atmospheric pressure. The prepared sample was characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy and electrochemical tests. LiMnPO4/C prepared in a DES has a nano-spindle form coated with a carbon layer (approximately 3 nm thick). This spindle-like LiMnPO4/C material delivers a discharge capacity of 129 mA h g–1 with a capacity retention ratio of approximately 96.1% after 100 cycles at 1 C. Even at 5 C, it still gives a discharge capacity of 106 mA h g–1, exhibiting good rate performance and cycle stability. The results of this work show that the chloride/ethylene glycol-based DES can act as a crystal-face inhibitor to adjust the oriented growth and morphology of LiMnPO4. Furthermore, deep eutectic solvents could find a wide application in the synthesis of electrode materials with special morphologies for lithium ion batteries.  相似文献   

15.
《Ceramics International》2017,43(16):13224-13232
The present study reports on the one-pot synthesis of Ni3V2O8 (NVO) electrodes by a simple metal organic framework-combustion (MOF-C) technique for anode applications in Li-ion batteries (LIBs). The particle morphology of the prepared NVO is observed to vary as irregular rods, porous bitter gourd and hybrid micro/nano particles depending on the concentration of the framework linker used during synthesis. In specific, the orthorhombic phase and the unique bitter gourd-type secondary structure comprised of agglomerated nanoparticles and porous morphologies is confirmed using powder X-ray diffraction, electron microscopies, X-ray photoelectron spectroscopy and N2 adsorption–desorption measurements. When tested for lithium batteries as anode, the bitter gourd-type NVO electrode shows an initial discharge capacity of 1362 mA h g−1 and a reversible capacity of 822 mA h g−1 are sustained at a rate of 200 mA g−1 after 100 cycles. Moreover, at 2000 mA g−1, a reversible capacity of 724 mA h g−1 is retained after 500 cycles. Interestingly, the porous bitter gourd-shaped NVO electrode registered significantly high rate performance and reversible specific capacities of 764, 531 and 313 mA h g−1 at high rates of 1, 5 and 10 A g−1, respectively.  相似文献   

16.
The Psf–PPSS–TPA composite cation exchange membrane consist of Psf(polysulfone)–PPSS (polyphenylenesulfidesulfone) block copolymer with TPA (tungstophosphoric acid) is prepared to apply for a separator in the all-vanadium redox flow battery. The membrane properties such as membrane resistance and ion exchange capacity, and thermal stability are investigated. The prepared Psf–PPSS–TPA composite cation exchange membrane showed higher thermal stability than Nafion117. The lowest membrane resistance of the prepared Psf–PPSS–TPA composite cation exchange membrane measured in 1 M (mol/dm3) H2SO4 aqueous solution was 0.94 Ω cm2 at 0.5 g of TPA solution. The performance properties of the all-vanadium redox flow battery (V-RFB) using the prepared cation exchange membrane are measured. The electromotive force, open circuit voltage at state of charge (SOC) of 100%, was 1.4 V. This value meets a theoretical electromotive force value of the V-RFB. The measuring cell resistance in charge and discharge at SOC 100% were 0.26 Ω and 0.31 Ω, respectively. The results of the present study suggest that the prepared Psf–PPSS–TPA composite cation exchange membrane is well suited for use in V-RFB as a separator.  相似文献   

17.
Porous rod-shaped Co3O4 has been successfully synthesized by one-step thermal annealing of the as-prepared Co-MOF-74 precursor and tested as anode materials for lithium ion batteries. The porous rod-shaped Co3O4 is found to be very attractive for lithium-ion batteries. It demonstrates a reversible capacity of 683 mAh/g after 80 cycles at 100 mA/g and an excellent rate performance with high average discharge specific capacities of 1231, 1026, 733 and 502 mAh/g at 50, 100, 200 and 400 mA/g, respectively. The excellent electrochemical performance should be due to the porous structural and composition characteristics.  相似文献   

18.
Fe3O4 nanoparticles encapsulated in porous carbon fibers (Fe3O4@PCFs) as anode materials in lithium ion batteries are fabricated by a facile single-nozzle electrospinning technique followed by heat treatment. A mixed solution of polyacrylonitrile (PAN) and polystyrene (PS) containing Fe3O4 nanoparticles is utilized to prepare hybrid precursor fibers of Fe3O4@PS/PAN. The resulted porous Fe3O4/carbon hybrid fibers composed of compact carbon shell and Fe3O4-embeded honeycomb-like carbon core are formed due to the thermal decomposition of PS and PAN. The Fe3O4@PCF composite demonstrates an initial reversible capacity of 1015 mAh g−1 with 84.4% capacity retention after 80 cycles at a current density of 0.2 A g−1. This electrode also exhibits superior rate capability with current density increasing from 0.1 to 2.0 A g−1, and capacity retention of 91% after 200 cycles at 2.0 A g−1. The exceptionally high performances are attributed to the high electric conductivity and structural stability of the porous carbon fibers with unique structure, which not only buffers the volume change of Fe3O4 with the internal space, but also acts as high-efficient transport pathways for ions and electrons. Furthermore, the compact carbon shell can promote the formation of stable solid electrolyte interphase on the fiber surface.  相似文献   

19.
《Ceramics International》2017,43(14):11058-11064
This paper introduces a unique porous yolk-shell structured Co3O4 microball, which is synthesized by spray pyrolysis from precursor solution with polyvinylpyrrolidone (PVP) additive. PVP acts as an organic template in the pyrolytic reaction facilitating the formation of yolk-shell structure. The electrochemical properties of porous yolk-shell Co3O4 microballs evaluated as anode materials for lithium ion batteries exhibit high initial columbic efficiency of 77.9% and high reversible capacity of 1025 mAh g−1 with capacity retention of 98.8% after 150 cycles at 1 A g−1. In contrast, the hollow microballs obtained without PVP addition show obvious capacity decay from 1033 to 748 mAh g−1 after 150 cycles with the capacity retention of 72.3%. In addition, the microballs with porous yolk-shell structure exhibit better rate performance. The superior electrochemical performance is mainly attributed to the unique porous yolk-shell structure which provides large voids to buffer volume expansion and enlarge the contact area with the electrolyte, shortening the diffusion path of the lithium ions.  相似文献   

20.
The rational integration of conductive nanocarbon scaffolds and insulative sulfur is an efficient method to build composite cathodes for high-energy-density lithium–sulfur batteries. The full demonstration of the high-energy-density electrodes is a key issue towards full utilization of sulfur in a lithium–sulfur cell. Herein, carbon nanotubes (CNTs) that possess robust mechanical properties, excellent electrical conductivities, and hierarchical porous structures were employed to fabricate carbon/sulfur composite cathode. A family of electrodes with areal sulfur loading densities ranging from 0.32 to 4.77 mg cm−2 were fabricated to reveal the relationship between sulfur loading density and their electrochemical behavior. At a low sulfur loading amount of 0.32 mg cm−2, a high sulfur utilization of 77% can be achieved for the initial discharge capacity of 1288 mAh gS−1, while the specific capacity based on the whole electrode was quite low as 84 mAh gC/S+binder+Al−1 at 0.2 C. Moderate increase in the areal sulfur loading to 2.02 mg cm−2 greatly improved the initial discharge capacity based on the whole electrode (280 mAh gC/S+binder+Al−1) without the sacrifice of sulfur utilization. When sulfur loading amount further increased to 3.77 mg cm−2, a high initial areal discharge capacity of 3.21 mAh cm−2 (864 mAh gS−1) was achieved on the composite cathode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号