首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
《Ceramics International》2015,41(7):8936-8944
Monolithic B4C ceramics and B4C–CNT composites were prepared by spark plasma sintering (SPS). The influence of particle size, heating rate, and CNT addition on sintering behavior, microstructure and mechanical properties were studied. Two different B4C powders were used to examine the effect of particle size. The effect of heating rate on monolithic B4C was investigated by applying three different heating rates (75, 150 and 225 °C/min). Moreover, in order to evaluate the effect of CNT addition, B4C–CNT (0.5–3 mass%) composites were also produced. Fully dense monolithic B4C ceramics were obtained by using heating rate of 75 °C/min. Vickers hardness value increased with increasing CNT content, and B4C–CNT composite with 3 mass% CNTs had the highest hardness value of 32.8 GPa. Addition of CNTs and increase in heating rate had a positive effect on the fracture toughness and the highest fracture toughness value, 5.9 MPa m1/2, was achieved in composite with 3 mass% CNTs.  相似文献   

2.
The effect of CNT orientation on electrical and mechanical properties is presented on the example of an ultra-high filler loaded multi-walled carbon nanotube (68 wt.% MWCNTs) epoxy-based nanocomposite. A novel manufacturing method based on hot-press infiltration through a semi-permeable membrane allows to obtain both, nanocomposites with aligned and randomly oriented CNTs (APNCs and RPNCs) over a broad filler loading range of ≈10–68 wt.%. APNCs are based on low-defected, mm-long aligned MWCNT arrays grown in chemical vapour deposition (CVD) process. Electrical conductivity and mechanical properties were measured parallel and perpendicular to the direction of CNTs. RPNCs are based on both, aligned mm-long MWCNTs and randomly oriented commercial μm-long and entangled MWCNTs (Baytube C150P, and exemplarily Arkema Graphistrength C100). The piezoresistive strain sensing capability of these high-wt.% APNCs and RPNCs had been investigated towards the influence of CNT orientations. For the highest CNT fraction of 68 wt.% of unidirectional aligned CNTs a Young’s modulus of E||  36 GPa and maximum electrical conductivity of σ||  37·104 S/m were achieved.  相似文献   

3.
We have demonstrated a highly ordered porous carbon (HOPC) as an effective electromagnetic absorber. The unique porous structures allow HOPC to possess high surface area and establish effective three-dimensional (3D) conductive interconnections at very low filler loading, which is responsible for effective electrical loss in terms of dissipating the induced current in the corresponding wax composites. Owing to the 3D porous frame, the wax composites with 1 and 5 wt% HOPC have shown effective bandwidth ∼2 and ∼4.5 GHz, respectively, which is considerably competitive to the performance found in the carbon nanotube- (CNT) and graphene-based composites of much higher filler loadings. This concept based on porous absorbers demonstrates more advantages in the fabrication of lightweight microwave-absorbing materials. Furthermore, the composite with 20 wt% HOPC has exhibited highly effective electromagnetic shielding performance up to 50 dB, which competes well with what has already been achieved in the composites embedded with CNTs and graphene. The fundamental mechanism based on electrical conductivity and complex impedance suggests specific strategies in the achievement of high-performance composites for electromagnetic attenuation and shielding.  相似文献   

4.
Poly(methyl methacrylate) (PMMA)-grafted multiwalled CNTs were prepared, and then dispersed into additional PMMA matrix, yielding highly insulated PMMA–CNT composites. The volume resistivity of PMMA–CNT was as high as 1.3 × 1015 Ω cm even at 7.3 wt% of the CNT. The individual CNTs electrically-isolated by the grafted PMMA chains in PMMA–CNT transmitted electromagnetic (EM) waves in the frequency range of 0.001–1 GHz, whereas the percolated CNTs in a conventional composite prepared by blending PMMA with the pristine CNTs strongly shielded the EM waves. This result suggests that the intrinsic conductivity of the CNT itself in PMMA–CNT does not contribute to the EM interference (EMI) shielding in the frequency range of 0.001–1 GHz. On the other hand, PMMA–CNT exhibited EMI shielding at the higher frequency range than 1 GHz because the dielectric loss of the CNT itself was rapidly increased over 1 GHz. At 110 GHz, PMMA–CNT with 7.3 wt% of the CNT had EMI SE of as high as 29 dB (0.57 mm thickness), though is slightly lower than that of the percolated conventional composite (35 dB). Thus, it is demonstrated that the highly insulated PMMA–CNT has the good EMI shielding at extremely high frequency range (30–300 GHz).  相似文献   

5.
Alumina ceramics reinforced with 1, 3, or 5 vol.% multi-walled carbon nanotubes (CNTs) were densified by pressureless sintering. Commercial CNTs were purified by acid treatment and then dispersed in water at pH 12. The dispersed CNTs were mixed with Al2O3 powder, which was also dispersed in water at pH 12. The mixture was freeze dried to prevent segregation by differential sedimentation during solvent evaporation. Cylindrical pellets were formed by uniaxial pressing and then densified by heating in flowing argon. The resulting pellets had relative densities as high as ~99% after sintering at 1500 °C for 2 h. Higher temperatures or longer times resulted in lower densities and weight loss due to degradation of the CNTs by reaction with the Al2O3. A CNT/Al2O3 composite containing 1 vol.% CNT had a higher flexure strength (~540 MPa) than pure Al2O3 densified under similar conditions (~400 MPa). Improved fracture toughness of CNT–Al2O3 composites was attributed to CNT pullout. This study has shown, for the first time, that CNT/Al2O3 composites can be densified by pressureless sintering without damage to the CNTs.  相似文献   

6.
《Ceramics International》2017,43(10):7573-7580
In this study, β-TCP/CNT nanocomposite has been synthesized by solution precipitation method. Then, the effects of the different percentage of CNT (CNT1β-TCP, CNT3β-TCP, CNT5β-TCP) and surfactant (CNT1β-TCP1SDBS, CNT1β-TCP2SDBS, CNT1β-TCP3SDBS) on β-TCP/CNT nanocomposite powder were studied. The X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and Transmission electron microscopy (TEM) analyses were used to characterize the samples. The observations revealed that the microstructure of 1 wt% CNT could provide dispersion without agglomeration in nanocomposite powder; however, a higher concentration of CNT powder in the nanocomposite resulted in the formation of Ca2PO7 phase. Implementing 2 wt% of SDBS as a surfactant modified the shape, size, and distribution of CNT particles on nanocomposites. Finally, the nanocomposite sample was immersed in simulated body fluid (SBF) to evaluate the in vitro bioactivity. It obviously showed an apatite layer on the surface after 7 days of immersion in SBF. Taken together, this nanocomposite might be potentially to be used as bone repair biomaterial.  相似文献   

7.
《Ceramics International》2016,42(4):4984-4992
The nanocomposite was produced via phenolic resin infiltrating into a carbon nanotube (CNT) buckypaper preform containing B4C fillers and amorphous Si particles followed by an in-situ reaction between resin-derived carbon and Si to form SiC matrix. The buckypaper preform combined with the in-situ reaction avoided the phase segregation and increased significantly the volume fraction of CNTs. The nanocomposites prepared by this new process were dense with the open porosities less than 6%. A suitable CNT–SiC bonding was achieved by creating a B4C modified interphase layer between CNTs and SiC. The hardness increased from 2.83 to 8.58 GPa, and the indentation fracture toughness was estimated to increase from 2.80 to 9.96 MPa m1/2, respectively, by the reinforcing effect of B4C. These nanocomposites became much more electrically conductive with high loading level of CNTs. The in-plane electrical resistivity decreased from 124 to 74.4 μΩ m by introducing B4C fillers.  相似文献   

8.
Three series of waterborne polyurethane (WBPU)/carbon nanotube (CNT) nanocomposites were prepared, and their morphology and properties with various 2,2-dimethylol propionic acid (DMPA) and CNT contents were investigated. The CNTs were homogeneously dispersed up to the optimum content in WBPU/CNT nanocomposite films. The degree of homogeneous CNT dispersion increased with increasing DMPA content in WBPU/CNT nanocomposite films. The optimum CNT content showed maximum tensile strength, Young's modulus and adhesive strength of WBPU/CNT nanocomposite film. The optimum CNT contents for WBPU/CNT nanocomposite samples containing 3.61, 5.16 and 5.86 wt% DMPA were about 0.50, 1.00 and 1.50 wt%, respectively. The WBPU/CNT nanocomposite adhesive showed higher adhesive strength at moderately high temperatures (40/60/80/100°C) compared to conventional WBPU. The highest adhesive strength at moderately high temperatures was found with 5.86 wt% DMPA and 1.5 wt% CNT content.  相似文献   

9.
A strategy called flake powder metallurgy (flake PM) was used to achieve a uniform distribution of carbon nanotubes (CNTs) in CNT/Al composites and thus realize the potential of CNTs as a reinforcement. It consists of the addressing of the incompatibilities of Al powders with CNTs, uniform adsorption of CNTs onto the Al nanoflake surface by slurry blending and consolidation of as-prepared CNT/Al composite powders by hot extrusion. By changing spherical Al powders to nanoflakes and surface modifying them with a polyvinyl alcohol hydrosol, flake PM achieved high compatibilities of Al powders with CNTs, in terms of both surface properties and geometries. Thus, it essentially exploits the fact that a homogeneous and individual distribution of CNTs in Al powders can be achieved simply by direct slurry blending. Moreover, the structural integrity of the CNTs was well maintained in the final composites since CNTs were protected from high energy physics force such as ballmilling. As a consequence, a strong and ductile CNT/Al composite with tensile strength of 435 MPa and plasticity of 6% was fabricated, which greatly surpasses values for materials fabricated by conventional methods.  相似文献   

10.
Manganese oxide was synthesized and dispersed on carbon nanotube (CNT) matrix by thermally decomposing manganese nitrates. CNTs used in this paper were grown directly on graphite disk by chemical vapor deposition technique. The capacitive behavior of manganese oxide/CNT composites was investigated by cyclic voltammetry and galvanostatic charge–discharge method in 1 M Na2SO4 aqueous solutions. When the loading mass of MnO2 is 36.9 μg cm 2, the specific capacitance of manganese oxide/CNT composite (based on MnO2) at the charge–discharge current density of 1 mA cm 2 equals 568 F g 1. Additionally, excellent charge–discharge cycle stability (ca. 88% value of specific capacitance remained after 2500 charge–discharge cycles) and power characteristics of the manganese oxide/CNT composite electrode can be observed. The effect of loading mass of MnO2 on specific capacitance of the electrode has also been investigated.  相似文献   

11.
It is demonstrated that 0.1 wt% of multi-walled carbon nanotubes (MWCNTs) or single-walled carbon nanotubes (SWCNTs) added to zirconia toughened alumina (ZTA) composites is enough to obtain high hardness and fracture toughness at indentation loads of 1, 5, and 10 kg. ZTA composites with 0.01 and 0.1 wt% of MWCNTs or SWCNTs were densified by spark plasma sintering (SPS) at 1520 °C resulting in a higher hardness and comparable fracture toughness to the ZTA matrix material. The observed toughening mechanisms include crack deflection, pullout of CNTs as well as bridged cracks leading to improved fracture toughness without evidence of transformation toughening of the ZrO2 phase. Scanning electron microscopy showed that MWCNTs rupture by a sword-in-sheath mechanism in the tensile direction contributing to an additional increase in fracture toughness.  相似文献   

12.
Nanocomposites consisting of precursor-derived Si–C–N ceramics incorporated with carbon nanotubes (CNTs) were successfully prepared by casting of a mixture of CNTs and a liquid precursor polymer followed by cross-linking and thermolysis. The effect of CNTs on the fracture toughness of these nanocomposites was investigated by a thermal loading technique. The results reveal a dependence of the fracture toughness on the type of the CNTs. One type shows a significant increase of the fracture toughness at CNT contents of only 1–2 mass%, whereas the other one exhibits no effect. The microstructural effects of CNTs observed at the fracture surfaces of the nanocomposites by scanning electron microscope (SEM) and transmission electron microscope (TEM) can be correlated with the observed fracture toughness behavior.  相似文献   

13.
This paper describes the mechanical properties of carbon nanotube-reinforced Al2O3 nanocomposites fabricated by hot-pressing. The results showed that compared with monolithic Al2O3 the fracture toughness, hardness and flexural strength of the nanocomposites were improved by 94%, 13% and 6.4% respectively, at 4 vol.% CNT additions. For 10 vol.% CNT additions, with the exception of the fracture toughness, which was improved by 66%, a decrease in mechanical properties was observed when compared with those for monolithic Al2O3. The toughening mechanism is discussed, which is due to the uniform dispersion of CNTs within the matrix, adequate densification, and proper CNT/matrix interfacial connections.  相似文献   

14.
《Ceramics International》2016,42(10):11634-11639
Coaxial β-Ni(OH)2 nanoparticle-impregnated and -coated CNT composites were fabricated via a facile and controllable solvothermal strategy. By reacting Ni(NO3)2 with NaOH before ethanolthermal treatment the β-Ni(OH)2 nanoparticles with diameters of several nanometers are densely packed on the surfaces of CNTs. Using ammonia hydroxide as precipitator and water/ethanol mixture as solvent the cavity of CNTs can be fully filled with the β-Ni(OH)2 nanoparticles with diameters of ~3 nm. The key mechanism for the formation of the two different Ni(OH)2/CNT composite structures lies in the different solvents and precipitation sequences. Both types of Ni(OH)2/CNT composites exhibit enhanced specific capacitances compared with blank Ni(OH)2 and the acidic CNTs. By loading 5 wt% of CNTs, the capacitance of Ni(OH)2-impregnated composite is 65% higher than that of pure Ni(OH)2 nanoparticles due to the enhanced electrical conductivity and unique cavity confined structure. These results imply that the CNT-confined structures are promising candidates for high performance supercapacitor.  相似文献   

15.
《Ceramics International》2017,43(7):5723-5727
The thermoelectric properties of Bi2Ba2Co2Oy and Bi1.975Na0.025Ba2Co2Oy+x wt% carbon nanotubes (CNT; x=0.00, 0.05, 0.10, 0.15, 0.5, and 1.0) ceramic samples synthesised by the solid-state reaction method were investigated from 300K to 950K. Na doping with a small amount played an important role in reducing resistivity and slightly reduced the Seebeck coefficients and the thermal conductivity. The CNT dispersant increased resistivity, but the thermal conductivity was reduced remarkably. In particular, the Bi1.975Na0.025Ba2Co2Oy+1.0wt% CNT sample exhibited an ultralow thermal conductivity of 0.39 W K−1 m−1 at 923K. This was attributed to the point defects caused by Na doping and the interface scattering caused by the CNT dispersant. The combination of Na doping and CNT dispersion had better effects on thermoelectric properties. The Bi1.975Na0.025Ba2Co2Oy+0.5wt% CNT sample exhibited a better dimensionless figure of merit (ZT) value of 0.2 at 923K, which was improved by 78.2%, compared with the undoped Bi2Ba2Co2Oy sample.  相似文献   

16.
《Ceramics International》2017,43(12):9005-9011
Silicon carbide (SiC) ceramics have superior properties in terms of wear, corrosion, oxidation, thermal shock resistance and high temperature mechanical behavior, as well. However, they can be sintered with difficulties and have poor fracture toughness, which hinder their widespread industrial applications. In this work, SiC-based ceramics mixed with 1 wt% and 3 wt% multilayer graphene (MLG), respectively, were fabricated by solid-state spark plasma sintering (SPS) at different temperatures. We report the processing of MLG/SiC composites, study their microstructure and mechanical properties and demonstrate the influence of MLG loading on the microstructure of sintered bodies. It was found that MLG improved the mechanical properties of SiC-based composites due to formation of special microstructure. Some toughening mechanism due to MLG pull-out and crack bridging of particles was also observed. Addition of 3 wt% MLG to SiC matrix increased the Vickers hardness and Young's modulus of composite, even at a sintering temperature of 1700 °C. Furthermore, the fracture toughness increased by 20% for the 1 wt% MLG-containing composite as compared to the monolithic SiC selected for reference material. We demonstrated that the evolved 4H-SiC grains, as well as the strong interactions among the grains in the porous free matrices played an important role in the mechanical properties of sintered composite ceramics.  相似文献   

17.
The axial mechanical, electrical and thermal properties of carbon nanotubes (CNTs) can be exploited macroscopically by assembling them parallel to each other into a fibre during their synthesis by chemical vapour deposition. Multifunctional composites with high volume fraction of CNT fibres are then made by direct polymer infiltration of an array of aligned fibres. The fibres have a very high surface area, causing the polymer to infiltrate them and resulting in a hierarchical composite structure. The electrical and thermal conductivities of CNT/epoxy composites are shown to be superior to those of equivalent specimens with T300 carbon fibre (CF) which is widely used in industry. From measurements of longitudinal coefficient of thermal expansion (CTE) of the composites we show that the CTE of CNT fibres is approximately ?1.6 × 10?6 K?1, similar to in-plane graphite. The combination of electrical, thermal and mechanical properties of CNT fibre composites demonstrates their potential for multifunctionality.  相似文献   

18.
Ultrafine grain WC-1.0 wt% carbon nanotube (CNT) composites were prepared using spark plasma sintering and the influence of sintering temperature on the properties of the composites was investigated. The specimen tested in this study achieved an optimum hardness of 22.81±0.81 GPa and fracture toughness of 8.95±0.38 MPa m1/2 after sintering at 1700 °C. On applying a sintering temperature of 1900 °C, the mechanical properties of the specimens deteriorated. Raman spectroscopic analysis results indicated that the structure of the CNTs changed and the graphite phase occurred at 1900 °C, which was responsible for the deteriorating hardness, elastic modulus, and fracture toughness. This study provides details of the transformation of the CNTs in the tungsten carbide matrix, indicating that the WC-CNT composites should be sintered at moderate temperatures.  相似文献   

19.
An Off-Lattice Monte Carlo model was developed to investigate effective thermal conductivities (Keff) and thermal transport limitations of polymer composites containing carbon nanotubes (CNTs) and inorganic nanoparticles. The simulation results agree with experimental data for poly(ether ether ketone) (PEEK) with inclusions of CNTs and tungsten disulfide (WS2) nanoparticles. The developed model can predict the thermal conductivities of multiphase composite systems more accurately than previous models by taking into account interfacial thermal resistance (Rbd) between the nanofillers and the polymer matrix, and the nanofiller orientation and morphology. The effects of (i) Rbd of CNT–PEEK and WS2–PEEK (0.0232–115.8 × 10−8 m2K/W), (ii) CNT concentration (0.1–0.5 wt%), (iii) CNT morphology (aspect ratio of 50–450, and diameter of 2–8 nm), and (iv) CNT orientation (parallel, random and perpendicular to the heat flux) on Keff of a multi-phase composite are quantified. The simulation results show that Keff of multiphase composites increases when the CNT concentration increases, and when the Rbd of CNT–PEEK and WS2–PEEK interfaces decrease. The thermal conductivity of composites with CNTs parallel to the heat flux can be enhanced ∼2.7 times relative to that of composites with randomly-dispersed CNTs. CNTs with larger aspect ratio and smaller diameter can significantly improve the thermal conductivity of a multiphase polymer composite.  相似文献   

20.
《Ceramics International》2016,42(7):8120-8127
In this paper, we described a simple two–step method for preparing needle-like CoNi2S4/CNT/graphene nanocomposite with robust connection among its ternary components. The prepared CoNi2S4/CNT/graphene nanocomposite has been thoroughly characterized by spectroscopic (Fourier-transform infrared spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy), X-ray diffraction and thermogravimetric analysis. Microscopy techniques (scanning electron microscopy–energy dispersive spectroscopy and transmission electron microscopy) were employed to probe the morphological structures. The electrochemical properties of the as-prepared 3D architectures were investigated with three and two-electrode systems. In addition to its high specific capacitance (710 F g−1 at 20 A g−1), after charging–discharging for 2000 cycles, the electrode still maintained the capacity retention of about 82%. When used as the active electrode material for supercapacitors, the fabricated CoNi2S4–g–CNT nanostructure exhibited excellent specific capacitance and good rate capability, making it a promising candidate for next-generation supercapacitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号