首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
通过考察油沙沥青减黏裂化和供氢热裂化改质油的密度、黏度、安定性、沥青质含量、甲苯不溶物含量随着储存时间的延长而发生的变化,研究了供氢热裂化改质油的储存稳定性及其内在机制。结果表明:随着储存时间的延长,减黏裂化和供氢热裂化改质油的密度、黏度、安定性、沥青质含量和甲苯不溶物含量均呈现增大的趋势,说明两种改质油的稳定性均随储存时间的延长而变差;在相同条件下,相比于减黏裂化改质油,供氢热裂化改质油的密度、黏度、沥青质含量和甲苯不溶物含量随储存时间延长而增加幅度较小,供氢热裂化改质油的安定性(斑点试验等级)一般不超过2级,满足船运对油品安定性的要求,说明供氢热裂化改质油的储存稳定性优于减黏裂化改质油;供氢热裂化改质油稳定性改善的原因主要为供氢馏分油的供氢作用和体系胶体稳定性的提高。  相似文献   

2.
龚朝兵  申宝剑 《石油化工》2004,33(Z1):1503-1504
报道了Mazzite沸石催化剂对大庆重油的催化裂化性能,并以HY沸石催化剂为对比进行了研究.通过对H-MAZ沸石催化剂和H-Y沸石催化剂对大庆重油的裂化性能的研究,发现H-MAZ沸石催化剂在改善裂化产品分布,提高柴汽比方面有潜在应用价值.  相似文献   

3.
加拿大油砂沥青常压渣油供氢热裂化改质基础研究   总被引:1,自引:0,他引:1  
以加拿大油砂沥青常压渣油(常压渣油)馏分油FA,FB,FC为初选供氢剂,对其氢转移能力进行了评价,优选出合适的供氢剂;在此基础上研究了不同反应条件下优选供氢剂FB对常压渣油热裂化改质效果的影响。结果表明:3种馏分油的相对供氢能力由大到小的顺序为FB>FC>FA;相比于常规热裂化反应,供氢热裂化反应过程中的生焦诱导期延长3.0~4.5 min,改质油的斑点实验等级降低了1~2级(420 ℃,20~40 min),随着反应时间的延长和反应温度的升高,改质油的密度下降的趋势更为明显;此外供氢热裂化改质油总降黏率是掺稀降黏率的1.14~1.40倍。  相似文献   

4.
脱碳工艺主要有焦化、溶剂脱沥青、减黏裂化和渣油催化裂化,对劣质原料具有较强的适应能力,在低油价下具有较强竞争力.焦化技术总体呈现大型化、灵活化、清洁化和组合化的发展趋势;溶剂脱沥青在超临界回收溶剂工艺开发成功后,经济上变得可行,以超临界溶剂梯级分离为先导的组合技术日益受到重视;减黏裂化技术较为成熟,供氢剂减黏裂化既可提...  相似文献   

5.
镍沉积对超稳Y沸石催化裂化活性及脱甲基性能的影响   总被引:2,自引:0,他引:2  
采用人工模拟方法制备了沉积镍的超稳Y沸石,用纯烃反应研究了镍沉积前后沸石的沸化性能,并用生成的烷量作为沸石被镍污染的只于沸石上的镍在催化裂化反应中能被还原 金属镍,裂化产物中甲烷的生成与镍的脱甲基作用相关。  相似文献   

6.
制备一系列不同Mn含量的超稳L沸石(Mn—USL沸石),将Mn—USL沸石替代质量分数为5%的REUSY沸石作为催化剂的活性组分,用标准轻油微反方法(MAT)对各催化剂样品进行性能评价,重点考察了添加不同锰含量的USL沸石对催化剂活性、比积炭、气体产物组成、氢转移反应活性、汽油辛烷值等的影响。研究结果表明,裂化催化剂中加入一定量Mn改性的USL沸石后,可以提高催化剂的反应活性,降低比积炭,并可以在降低裂化汽油中烯烃含量的同时提高异构烷烃的含量,汽油的辛烷值变化不大。  相似文献   

7.
介绍了一种使用ZSM-5沸石催化剂对催化裂化汽油进行改质的流化床反应工艺.此工艺可有效降低汽油烯烃和硫含量,同时提高汽油辛烷值,改质汽油收率高,干气和焦炭产率较低.研究了不同反应条件下以及不同馏分汽油改质后产物分布的变化和烯烃、硫含量等汽油性质的改善情况.研究结果表明,采用低反应温度、高催化剂循环量条件,改质汽油烯烃含量、硫含量降低幅度大;相反,则裂化气产率和丙烯选择性提高.加工重馏分汽油时改质汽油收率高,但较全馏分汽油改质烯烃含量降幅稍低.  相似文献   

8.
磷氧化物改性对ZSM—5沸石物化性质及择形催化性能的影响   总被引:13,自引:0,他引:13  
采用磷氧化物对ZSM-5沸石进行修饰改性,用XRD、NMR、IR、BET等物化手段对改性后沸石的物质性质变化情况进行了表征,并采用轻油微反和小型固定流化床催化裂化装置对改性后的样品进行了反应性能评价。结果表明,采用磷氧化物对ZSM-5沸石的修饰改性能够抑制它在水热条件下的骨架脱铝,并延缓沸石在水热过程中的晶系转变,保持结构的对称性不下降,从而显著改善ZSM-5沸石的水热活性稳定性,而沸石的晶体形貌及孔体积等没有受到大的影响。磷化物的修饰改性还改善了ZSM-5沸石的酸强度分布状况,少量加入FCC催化剂中可使裂化反应中的择形催化性能得到改善,较好地提高了催化裂化汽油的辛烷值,特别是马达法辛烷值。  相似文献   

9.
稀土含量对超稳Y沸石的酸性及裂化活性的影响   总被引:1,自引:0,他引:1  
本文研究了不同稀土含量的超稳Y沸石的酸性、正己烷裂化活性、水热稳定性和氢转移反应。发现强酸中心、弱酸中心和正己烷裂化活性都随着沸石中稀土含量的增加而增加,沸石的酸性与正己烷裂化活性呈很好的对应关系。沸石中稀土含量越多,它们的水热稳定性越高。同时沸石的酸性随水热处理温度的提高而减小;而且氢转移反应随着沸石的酸性降低而变慢,但烯烃选择性却增加。  相似文献   

10.
加工石蜡基油MIP工艺专用催化剂RMI的开发   总被引:5,自引:3,他引:2  
为最大限度地挖掘MIP新工艺的技术潜力,采用性能优化的Y型沸石组合、改性的基质组分以及烯烃芳构化性能良好的改性ZRP沸石材料,研制出与MIP工艺相匹配的RMI专用裂化催化剂,来强化MIP工艺两个反应区的催化裂化反应,并在MIP中型装置上进行了评价。评价结果表明,与MIP工业装置现用的常规裂化催化剂相比,加工石蜡基原料油时,新开发的RMI催化剂轻烃收率增加0.66个百分点,汽油烯烃质量分数降低3.29个百分点,同时汽油RON和MON基本保持不变。说明在MIP工况下,RMI催化剂较常规裂化催化剂更能发挥MIP新工艺的优点和特点。  相似文献   

11.
河南油田超稠油复合催化降粘体系效果评价   总被引:1,自引:0,他引:1  
河南油田创新地进行了稠油热采地下复合催化降粘技术研究。本实验考察了无水体系、含水体系、水热催化裂解体系、乳化降粘体系、乳化水热催化裂解复合体系(即复合催化降粘体系)对特超稠油作用后物理化学性质的变化以及对特超稠油的降粘效果,探讨了乳化水热催化裂解降粘的作用机理。结果表明,在催化剂作用下,特超稠油中重质组分发生部分裂解,原油物化性能得到明显改善,乳化水热催化裂解复合体系对河南油田超稠油的降粘率达98.7%。  相似文献   

12.
Abstract

Upgrading heavy oil using syngas (CO + H2) as an alternative hydrogen source with a dispersed catalyst was investigated. Finely dispersed catalysts for upgrading were prepared by means of microemulsion, and their performance was investigated in a batch-type autoclave. This process was compared to the traditional pure hydrogen hydro-upgrading process. Feedstock conversion, light-oil yield, coke yield, product distribution, sulfur, nitrogen and viscosity were investigated comprehensively to optimize the process. The addition of finely dispersed catalysts could improve the distribution and performance of cracking products, and inhibit the cracking gas and coke formation. This work shows that residue-syngas coprocessing is promising for heavy oil upgrading.  相似文献   

13.
降低汽油硫含量的重油裂化催化剂的开发   总被引:3,自引:0,他引:3  
摘要:降低汽油硫含量和重油催化裂化系列催化剂DOS的开发针对降硫组元及活性组元进行了研究,开发了降硫功能组元L酸碱对化合物和筛选了与之相匹配的分子筛活性组元。评价结果表明,开发的L酸碱对化合物能增加催化剂对大分子硫化物的转化,促进脱硫反应的发生;筛选的分子筛与L酸碱对化合物协同作用具有较好的降烯烃和降硫功能。开发的降硫重油裂化催化剂DOS在ACE装置和固定流化床装置评价结果表明:与工业降烯烃催化剂相比,重油转化能力强,抗重金属污染能力强,汽油硫含量可降低20%以上。  相似文献   

14.
通过以不同浓度盐酸对页岩油中的碱性氮化物进行分离及定量添加碱氮模型化合物的方法,辅以高分辨质谱对不同样品中碱性氮化物的结构进行表征,研究了页岩油中碱性氮化物对其裂化反应的阻滞作用。结果表明:页岩油中碱性氮化物主要为带烷基侧链的吡啶、环烷基吡啶,而且盐酸浓度越高,所富集出的碱性氮化物类型越多;碱性氮化物的去除有利于页岩油催化裂化反应的发生,且除含量外,碱性氮化物的结构对页岩油裂化过程也存在较大的影响,相对分子质量越大、缩合程度越高的碱性氮化物越不利于页岩油催化裂化反应的进行。  相似文献   

15.
以大庆原油减二线和重油催化裂化柴油的混合油为原料,在3936/3825催化剂上进行了中压加氢改质的中型试验,并在燕山1.0Mt/a工业装置上应用,结果表明产品质量到设计要求,采用有抗氮能力的3905催化剂取代原3825催化剂的后中型试验结果表明,在中压加氢裂化条件下可加工馏分重及氮含量较高的原料,并可得到低芳烃,低硫柴油及低BMCI值的尾油作蒸汽裂解原料,预计原设计1.0Mt/a的工业装置可扩能为1.3Mt/a.  相似文献   

16.
油砂沥青改质产品中甲苯不溶物的表征   总被引:2,自引:0,他引:2  
油砂沥青及其衍生产品中含有悬浮的甲苯不溶物如粘土和碳质固体颗粒,会导致后续加工过程中的结垢、催化剂失活和床层堵塞。笔者从油砂沥青衍生产品中分离出甲苯不溶物并进行了分析表征。研究发现,油砂沥青渣油中的甲苯不溶物主要是超细的硅铝酸盐粘土颗粒,结合了部分干酪根成分;焦化渣油和焦化瓦斯油储罐中沉积的甲苯不溶物类似焦炭;焦化瓦斯油中的甲苯不溶物主要是碳质有机物颗粒,但氮、氧含量相对丰富,并含少量矿物质和粘土颗粒,含氮的杂环化合物如吡咯类物质的存在可能是导致焦化瓦斯油中甲苯不溶物生成的主要因素。  相似文献   

17.
中国石油石油化工研究院针对催化裂化原料预处理所研发的PHF-311加氢催化剂,于2019年9月在中国石油独山子石化分公司1.0 Mt/a蜡油加氢装置上成功应用。标定结果表明,在反应温度358.5℃、反应压力10.9 MPa、氢油体积比699、主剂体积空速0.94 h-1的工艺条件下,加氢蜡油的硫质量分数为493μg/g,氮质量分数为474.8μg/g,残炭为0.15%,是优质的催化裂化原料;加氢柴油的硫质量分数为6.2μg/g,氮质量分数为30.8μg/g,可作为柴油调合组分。从装置运行情况可以看出,PHF-311催化剂表现出较高的加氢脱硫、脱氮及降残炭活性,能够满足企业对清洁燃料生产的要求。  相似文献   

18.
以稀土超稳Y型分子筛和拟薄水铝石为主要原料制备了重油催化裂化(RFCC)模型催化剂,通过N 2物理吸附和高级裂化评价装置研究了水热减活RFCC模型催化剂中Y型分子筛与基质比表面积之比(Z/M)及其对催化裂化反应性能的影响。结果表明,拟薄水铝石含量越高,Y型分子筛抵御高温水热破坏的能力越差,Z/M越小。拟薄水铝石质量分数为30%时,水热减活后分子筛比表面积仅为减活前的28.3%,Z/M仅为0.8。拟薄水铝石含量不仅影响催化剂的水热稳定性,还影响催化剂的形貌。拟薄水铝石含量越高,催化剂微球形貌规整性越差,当其质量分数为30%时,催化剂微球表面不仅产生了大量的孔洞,还出现了许多裂纹。随着模型催化剂Z/M下降,目标产物液化石油气和汽油产率之和逐渐降低,轻循环油产率升高,焦炭选择性变差。  相似文献   

19.
通过分析汽油中硫的分布及脱硫工艺技术原理。模拟提升管—流化床催化裂化装置反应过程,对流化床操作条件(剂油比、反应温度、空速)和不同的汽油馏程进行了考察,说明了在催化裂化条件下的降硫效果,为催化剂在降低汽油硫含量方面的应用提供了依据。  相似文献   

20.
针对蒸汽吞吐、蒸汽驱的低渗透区超稠油流动阻力大、开采困难等问题,提出低渗透区超稠油原位催化改质降黏技术。采用反应釜法和物模实验法,筛选高效原位改质催化剂,研究催化剂的注入方式,并筛选5种催化剂及其改质条件。研究表明:以有机锌为催化剂,催化剂用量为0.1%、稠油含水率为50%时,超稠油具有较好的改质降黏效果;物模实验法原位催化改质降黏效果优于反应釜法,稠油含水率为50%、催化剂用量为0.1%、反应温度为240 ℃、填砂管回压为8~10 MPa和反应时间为24 h条件下,稠油黏度由145 000 mPa·s降至54 260 mPa·s,降黏率达62.58%;物模实验法改质油的密度和酸值下降,重组分(胶质和沥青质)含量减少10.85%,300、500 ℃前馏分分别提高了6.75%、17.29%。在240 ℃、10 MPa条件下,采用自制生物质基调剖剂封堵优势渗流通道,将催化剂注入低渗填砂管后水驱,改质稠油黏度降至68 450 mPa·s,降黏率达52.79%,流动阻力减少19.74%,采出率达到95.22%,稠油综合采出率由46.94%增至85.13%。该方法为超稠油蒸汽吞吐、蒸汽驱低渗透区域的稠油进行原位催化改质降黏提高采收率提供了借鉴。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号