首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
冰川与积雪动态的遥感监测   总被引:2,自引:0,他引:2  
  相似文献   

2.
像元尺度上积雪面积比例与雪水当量的关系是将积雪遥感面积数据引入水文模型的有效手段。以冰沟流域为例,利用合成孔径雷达ENVISAT-ASAR数据反演得到积雪面积、雪水当量信息,分析了500m像元尺度上积雪面积比例与雪水当量的关系。结果表明:1在积雪面积比例未达到全覆盖饱和状态,雪水当量和积雪面积比例呈正相关关系,积雪面积比例控制着雪水当量的最大值,但由于受到地形的影响,关系不显著;2当考虑地形因子影响,即将坡度、坡向、海拔、积雪面积比例与雪水当量进行多元线性回归,回归系数的显著性水平均小于0.05,相关系数(r)达到0.841。因此,在高分辨率地形因子已知的情况下,结合遥感积雪数据,可建立良好的积雪面积比例和雪水当量之间的关系,有利于高分辨率积雪面积比例数据在寒区分布式水文模型中的应用。  相似文献   

3.
积雪定量化遥感研究进展   总被引:9,自引:0,他引:9  
通过综观各种平台和传感器进行积雪面积、深度和干湿雪探测的能力及有关研究的综述评价,了解积雪定量化遥感的最新研究进展、存在问题和发展趋势  相似文献   

4.
气象卫星资料对积雪的遥感监测与分析   总被引:11,自引:0,他引:11  
概述了NOAA气象卫星积雪遥感监测的基本原理和国内几种积雪遥感监测的方法,较详细地介绍了积雪监测方法。以1998年6月2日祁连山区积雪遥感监测和1998年祁连山区疏勒河流域逐旬积雪遥感监测为例介绍了此方法应用情况。通过对山区积雪与邻近气象站降水资料的分析发现测站降水量与后一旬的雪深、雪面积相关性较好。  相似文献   

5.
土壤是一个时空连续的变异体,传统土壤参数测定与监测方法难以揭示土壤的时空间异质性规律;土壤光学遥感可以实现土壤主要参数的快速、宏观测定。本文综合评述了土壤不同理化参数(有机质、土壤水分、矿物组成、土壤质地、土壤结皮)在光学波段的光谱特征与遥感反演,光学遥感在土壤分类与制图方面的应用;分析了土壤线的各种影响因素(外部因素及相关土壤理化参数),以及土壤线对植被指数定量监测植被状况的重要性;归纳了土壤光学遥感存在问题与发展趋势。  相似文献   

6.
遥感监测土壤水分的理论、方法及研究进展   总被引:37,自引:1,他引:37  
对国内外遥感监测土壤水分的发展情况进行了回顾,简单总结了国内外常用的遥感监测土壤水分的方法及其原理,对目前遥感监测土壤水分领域的研究重点和未来发展方向进行了评述。以改进的热惯量法和植被缺水指数法等为主要代表的土壤水分遥感监测方法日臻成熟,可以投入业务运行|随着成本的不断降低,微波遥感是监测土壤水分的最有希望的方法之一。  相似文献   

7.
积雪遥感动态研究的现状及展望   总被引:6,自引:3,他引:6  
简要讨论了积雪遥感研究的现状,主要包括常用传感器的物理参数及其可行性和局限性,云和雪的区分技术,雪盖面积和积雪深度的提取,雪水当量换算以及积雪遥感在融雪径流模拟、雪灾监测与评价、积雪对气候变化的影响研究等方面的应用。并对积雪遥感研究的发展趋势做了简要的分析与展望。  相似文献   

8.
中国用遥感方法进行干旱监测的研究进展   总被引:19,自引:2,他引:19  
运用遥感技术进行干旱监测具有不可替代的优势,我国近年来在此领域做了不少的探索和研究。本文根据各种遥感干旱监测方法的特点,将其归纳为:基于土壤热惯量的方法,基于区域蒸散量计算的方法,基于植被指数和温度的方法以及基于土壤水分光谱特征的方法等五类,分别介绍了我国利用遥感技术进行干旱监测的主要方法及其进展。总结了遥感技术在干旱监测领域发挥的重要作用及其在实际运用中存在的问题。  相似文献   

9.
区域土壤盐渍化遥感监测研究综述   总被引:35,自引:0,他引:35       下载免费PDF全文
对国内外遥感监测土壤盐渍化发展情况作了介绍,对土壤盐渍化及其动态变化遥感监测方法进行了总结,数字图像处理将成为区域土壤盐渍化遥感监测研究的主要手段,土壤盐渍化是一个世界性的问题,应将遥感琢遥感图像处理的最新成果充分运用到盐渍土监测研究中,为盐渍土治理与农业可持续发展提供信息保障。  相似文献   

10.
土壤盐碱化遥感应用研究进展   总被引:7,自引:0,他引:7  
对近年来国内外遥感监测土壤盐碱化的研究进展作了介绍,并从土壤盐碱化遥感信息特性和影响因素、各种遥感数据源、数据处理方法和研究热点等方面做了总结。土壤盐碱化的遥感方法和传统方法可获取多源的数据,包括来自多平台遥感的光谱数据、地面实测和实验室分析数据、其它研究手段得到的地理相关数据以及历史资料等。在GIS技术支持下的多源数据集成方法可对土壤盐碱化进行定量探测,在土壤盐碱化遥感应用中取得了较好的效果。  相似文献   

11.
Time series of snow covered area (SCA) estimates from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat Enhanced Thematic Mapper (ETM+) were merged with a spatially explicit snowmelt model to reconstruct snow water equivalent (SWE) in the Rio Grande headwaters (3419 km2). A linear optimization scheme was used to derive SCA estimates that preserve the statistical moments of the higher spatial resolution (i.e. 30 m) ETM+ data and resolve the superior temporal signal (i.e. ∼ daily) of the MODIS data. It was found that merging the two SCA products led to an 8% decrease and an 18% increase in the basinwide SWE in 2001 and 2002, respectively, compared to the SWE estimated from ETM+ only. Relative to SWE simulations using only ETM+ data, the hybrid SCA estimates reduced the mean absolute SWE error by 17 and 84% in 2001 and 2002, respectively; errors were determined using intensive snow survey data and two separate methods of scaling snow survey field measurements of SWE to the 1-km model pixel resolution. SWE bias for both years was reduced by 49% and skewness was reduced from − 0.78 to 0.49. These results indicate that the hybrid SWE was closer to being an unbiased estimate of the measured SWE and errors were distributed more normally. The accuracy of the SCA estimates is likely dependent on the vegetation fraction.  相似文献   

12.
The snowpack is a key variable of the hydrological cycle. In recent years, numerous studies have demonstrated the importance of long-term monitoring of the Siberian snowpack on large spatial scales owing to evidence of increased river discharge, changes in snow fall amount and alterations with respect to the timing of ablation. This can currently only be accomplished using remote sensing methods. The main objective of this study is to take advantage of a new land surface forcing and simulation database in order to both improve and evaluate the snow depths retrieved using a dynamic snow depth retrieval algorithm. The dynamic algorithm attempts to account for the spatial and temporal internal properties of the snow cover. The passive microwave radiances used to derive snow depth were measured by the Special Sensor Microwave/ Imager (SSM/I) data between July 1987 and July 1995.The evaluation of remotely sensed algorithms is especially difficult over regions such as Siberia which are characterized by relatively sparse surface measurement networks. In addition, existing gridded climatological snow depth databases do not necessarily correspond to the same time period as the available satellite data. In order to evaluate the retrieval algorithm over Siberia for a recent multi-year period at a relatively large spatial scale, a land surface scheme reanalysis product from the Global Soil Wetness Project-Phase 2 (GSWP-2) is used in the current study. First, the high quality GSWP-2 input forcing data were used to drive a land surface scheme (LSS) in order to derive a climatological near-surface soil temperature. Four different snow depth retrieval methods are compared, two of which use the new soil temperature climatology as input. Second, a GSWP-2 snow water equivalent (SWE) climatology is computed from 12 state-of-the-art LSS over the same time period covered by the SSM/I data. This climatology was compared to the corresponding fields from the retrievals. This study reaffirmed the results of recent studies which showed that the inclusion of ancillary data into a satellite data-based snow retrieval algorithm, such as soil temperatures, can significantly improve the results. The current study also goes a step further and reveals the importance of including the monthly soil temperature variation into the retrieval, which improves results in terms of the spatial distribution of the snowpack. Finally, it is shown that further improved predictions of SWE are obtained when spatial and temporal variations in snow density are accounted for.  相似文献   

13.
积雪属性的非均匀性在水平方向上表现为像元内积雪未完全覆盖和雪深分布的不均匀,在垂直方向上表现为积雪剖面上粒径和密度的不一致导致的积雪分层现象。这些积雪属性的非均匀性对被动微波遥感反演雪深或雪水当量带来很大的不确定性,并且给反演结果的验证带来不确定性。通过野外积雪的微波辐射特性观测、遥感积雪产品对比分析、积雪辐射传输模型模拟对这些问题进行阐述和探讨,为今后积雪微波遥感反演算法发展和结果验证提供参考。  相似文献   

14.
    
Sand emission process of sandstorm is a fundamental part of sand-dust cycle. Sand emission process simulating accuracy plays a crucial role in correctly simulating sand transporting and settling process. As one of the most widely used sandstorm models, WRF-Chem (Weather Research and Forecasting with Chemistry) is used to simulate the sandstorm happened during March 26 and March 28, 2018 in northern China in this study. It is reported that uncertainties in underlying surface and soil moisture initial status in WRF-Chem can lead to great bias in its simulating results. Remote sensing products like land cover and soil moisture products have been widely accepted for their higher accuracy, which provides an opportunity for WRF-Chem simulating sandstorms better. Therefore, to examine the effects of initial field uncertainties on sandstorm simulating, we simulated a sandstorm using WRF-Chem by replacing the underlying surface and soil moisture initial field with new version soil database, MODIS (Moderate Resolution Imaging Spectroradiometer) land cover products and AMSR2 (the Advanced Microwave Scanning Radiometer 2) soil moisture products. Four experiments were carried out, including a control experiment and three contrast experiments. The three contrast experiments are organized by only replacing the soil moisture initial field, only replacing land cover and soil texture, and replacing both. After replacing traditional initial field with remote sensing data, the simulation accuracy all has improved. Among the three contrast experiments, replacing all three parameters (land cover, soil texture and soil moisture) has the greatest improvement: the correlation coefficient of PM10 increases by 0.30, the average deviation reduces by 31.18 μg/m3, the root mean square error reduces by 21.7 μg/m3, the correlation coefficient of AOD (Aerosol Optical Depth) improves by 0.14, the average deviation reduces by 0.29, the root mean square error reduces by 0.18. The contrast experiment which only replacing soil moisture performs the second, followed by only replacing land cover and soil texture which does not improve the simulation results much. In conclusion, the simulation accuracy of sandstorm is improved by introducing the remote sensing products.  相似文献   

15.
沙尘暴的起沙过程是沙尘循环中的重要部分,起沙过程模拟的准确性对于输送和沉降过程的准确模拟十分重要。WRF-Chem (Weather Research and Forecasting with Chemistry)是目前应用最广泛的沙尘暴模拟模式之一,但目前WRF-Chem对于起沙量的模拟具有很大的不确定性,受下垫面和土壤湿度的影响较大。WRF-Chem模式中的下垫面数据比较老旧,且驱动WRF-Chem模式的资料中土壤湿度是偏高的。土地覆被和土壤水分等遥感产品的日趋成熟,为WRF-Chem模拟沙尘暴提供了新的选择和契机,因此,将AMSR2 (the Advanced Microwave Scanning Radiometer 2) 土壤湿度和MODIS (Moderate Resolution Imaging Spectroradiometer) 土地利用遥感产品及实地调查资料替换WRF-Chem下垫面,利用WRF-Chem模拟了2018年3月26日至28日发生在我国华北地区的一场沙尘过程,用于探究下垫面参数对WRF-Chem模式模拟沙尘暴的精度产生的影响。共开展了4组实验,包括1组控制实验和3组对照实验,3组对照实验分别是在控制试验基础上仅替换土壤水分初始场、仅替换土地覆被和土壤质地以及同时替换土地覆被、土壤质地及土壤水分初始场。在加入遥感数据之后,3组对照实验的模拟精度比控制实验均有所提高,其中同时替换土壤水分初始场、土地覆被和土壤质地对模式模拟结果改善最大。改善后PM10模拟的相关系数提高了0.30,平均偏差减少了31.18 μg/m3,均方根误差减少了21.70 μg/m3;AOD (Aerosol Optical Depth) 的相关系数提高了0.14,平均偏差减少了0.29,均方根误差减少了0.18,仅替换土壤水分初始场效果次之,仅替换土地覆被和土壤质地对于模拟结果改善不大。以上结果表明:加入遥感资料可以有效提高WRF-Chem对沙尘过程的模拟精度。  相似文献   

16.
利用实测资料评估被动微波遥感雪深算法   总被引:1,自引:0,他引:1  
利用SSM/I微波亮温数据,结合地面站点实测资料,比较Chang算法和Che算法在前苏联、中国及蒙古境内6种不同积雪类型的反演精度,结果表明:被广泛应用于全球雪深反演的Chang算法低估了前苏联境内雪深7.6cm,相对误差为-24.3%,而分别高估中国及蒙古境内雪深9.2cm与11.4cm,相对误差分别为108.8%和180.9%,区域反演效果很差;针对中国境内积雪的Che算法严重低估前苏联境内雪深,整体低估21.3cm,相对误差为-68.6%,RMSE为31.4cm;在中国及蒙古境内反演效果有所改善。6个积雪类型中,植被较单一,地形较平坦的苔原型积雪和草原型积雪雪深的反演效果较好。随着纬度和积雪深度的增加被动微波雪深反演有由高估变为低估的趋势。Che算法反演的雪深大体以40°N为界,以北表现为低估,以南表现为高估,另一方面,整体上该算法在雪深低于6.7cm时表现为低高估,高于6.7cm表现为低估;因此,全球算法应用到局部地区需要进行修正,不同下垫面性质以和气候条件下形成的积雪的被动微波反演应区别对待。  相似文献   

17.
A two-source (soil + vegetation) energy balance model using microwave-derived near-surface soil moisture as a key boundary condition (TSMSM) and another scheme using thermal-infrared (radiometric) surface temperature (TSMTH) were applied to remote sensing data collected over a corn and soybean production region in central Iowa during the Soil Moisture Atmosphere Coupling Experiment (SMACEX)/Soil Moisture Experiment of 2002 (SMEX02). The TSMSM was run using fields of near-surface soil moisture from microwave imagery collected by aircraft on six days during the experiment, yielding a root mean square difference (RMSD) between model estimates and tower measurements of net radiation (Rn) and soil heat flux (G) of approximately 20 W m− 2, and 45 W m− 2 for sensible (H) and latent heating (LE). Similar results for H and LE were obtained at landscape/regional scales when comparing model output with transect-average aircraft flux measurements. Flux predictions from the TSMSM and TSMTH models were compared for two days when both airborne microwave-derived soil moisture and radiometric surface temperature (TR) data from Landsat were available. These two days represented contrasting conditions of moderate crop cover/dry soil surface and dense crop cover/moist soil surface. Surface temperature diagnosed by the TSMSM was also compared directly to the remotely sensed TR fields as an additional means of model validation. The TSMSM performed well under moderate crop cover/dry soil surface conditions, but yielded larger discrepancies with observed heat fluxes and TR under the high crop cover/moist soil surface conditions. Flux predictions from the thermal-based two-source model typically showed biases of opposite sign, suggesting that an average of the flux output from both modeling schemes may improve overall accuracy in flux predictions, in effect incorporating multiple remote-sensing constraints on canopy and soil fluxes.  相似文献   

18.
NASA系列算法(Chang,NASA96和Foster算法)是被动微波遥感反演雪深、雪水当量的简单、实用的经验算法,并经过了很多学者大范围的算法验证和改进。为了进一步评价NASA系列算法在东北地区的时空适用性,于长春净月潭区域选定了一个以农田和森林为主的10km×10km被动微波遥感混合像元,在时间上连续观测整个干雪期(2014年12月至次年2月)的积雪参数和气象数据,结合FY3B卫星搭载的微波成像仪(MWRI)亮温数据,对NASA系列算法精度进行了评价分析。结果表明:对于雪深的反演,Chang算法和NASA 96算法前期反演效果较好,后期随着时间的推进高估雪深的趋势愈加明显。由于考虑了森林覆盖率的影响,NASA 96算法的反演精度更高。两种算法最大高估值分别是24.46和14.62cm,这是因为期间雪性质不断变化,尤其是雪粒径不断增大的缘故。Foster算法也严重高估了雪水当量,可能是由于积雪类型的分类系统未必适合于东北地区的积雪特征。本文的积雪连续观测数据为认识东北地区的积雪特性奠定了基础,对算法的时间序列验证与分析为雪参数反演算法的进一步改进提供了可靠依据。  相似文献   

19.
The directional emissivity of snow and ice surfaces in the 8–14 μm thermal infrared (TIR) atmospheric window was determined from spectral radiances obtained by field measurements using a portable Fourier transform infrared spectrometer in conjunction with snow pit work. The dependence of the directional emissivity on the surface snow type (grain size and shape) was examined. We obtained emissivity spectra for five different surface types, i.e., fine dendrite snow, medium granular snow, coarse grain snow, welded sun crust snow, and smooth bare ice. The derived emissivities show a distinct spectral contrast at wavelengths λ = 10.5–12.5 μm which is enhanced with increasing the snow grain size. For example, emissivities at both 10.5 μm and 12.5 μm for the nadir angle were 0.997 and 0.984 for the fine dendrite snow, 0.996 and 0.974 for the medium granular snow, 0.995 and 0.971 for the coarse grain snow, 0.992 and 0.968 for the sun crust, and 0.993 and 0.949 for the bare ice, respectively. In addition, the spectral contrast exhibits a strong angular dependence, particularly for the coarser snow and bare ice, e.g., the emissivity at λ = 12.5 μm for the off-nadir angle of 75° reaches down to 0.927, 0.896, and 0.709 for the coarse grain snow, sun crust, and bare ice cases, respectively. The angular dependent emissivity spectra of the bare ice were quite consistent with the spectra predicted by the Fresnel reflectance theory. The observed results firmly demonstrate that the directional emissivity of snow in the TIR can vary depending upon the surface snow type. The high variability of the spectral emissivity of snow also suggests the possibility to discriminate between snow and ice types from space using the brightness temperature difference in the atmospheric window.  相似文献   

20.
利用被动微波遥感数据反演我国积雪深度及其精度评   总被引:19,自引:1,他引:18  
考虑到我国西部地区使用SSM/I全球算法将高估积雪深度,故以东经105°为界将我国分为东部和西部。在西部地区采用修正后的雪深算法,东部地区沿用全球算法。对散射系数较高,容易和积雪相混淆的降雨、寒漠和冻土地表类型,通过积雪分类树进行剔除,进而发展了一套适用于全国积雪深度的业务化反演方案。最后利用MODIS积雪产品对冬季90天的结果进行了精度评价,总体精度平均达到86.4%,最高精度达到95.5%,Kappa系数均值为65.5%,最大值达到86.2%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号