首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
1 mol% Li2O excess (Na0.51K0.47Li0.02)(Nb0.8Ta0.2)O3 ceramics were prepared by the conventional mixed oxide method and sintered from 950 to 1200 °C. Also, Li2O was employed as a sintering aid for high densification and low temperature sintering process. X-ray diffraction results of 1 mol% Li2O excess (Na0.51K0.47Li0.02)(Nb0.8Ta0.2)O3 lead free piezoelectric ceramics indicated that the specimens were well crystallized and have tetragonal structure. The specimens which sintered at 1050 °C showed the highest piezoelectric properties compared with others. The measured piezoelectric constant and electromechanical coupling coefficient were 231 pC/N and 38.9%, respectively. Curie temperature of (Na0.51K0.47Li0.02)(Nb0.8Ta0.2)O3 ceramics was 344.32, 344.4 and 344.5 °C at 1, 10 and 100 kHz, respectively.  相似文献   

2.
Five Ba(Co1/3Nb2/3)O3 samples sintered at different temperatures (form 1350 to 1550 °C), one Ba(Mg1/3Ta2/3)O3 and a Ba(Mg1/3Nb2/3)O3 sample were examined by Raman scattering to reveal the correlation of the 1:2 ordered perovskite structure with the microwave properties, such as dielectric constant and Q factors. The Ba(Co1/3Nb2/3)O3 sample sintered at 1400 °C, which possesses the highest microwave Q value and the lowest dielectric constant among five Ba(Co1/3Nb2/3)O3 samples, has the narrowest width and the highest frequency of the stretch mode of oxygen octahedron (i.e. A1g(O) near 800 cm−1). We found that the dielectric constant is strongly correlated with the Raman shift of A1g(O) stretch modes, and the width of A1g(O) stretch mode reflects the quality factor Q × f value in the 1:2 ordered perovskite materials. This concludes that the oxygen octahedron play an important role of the material's microwave performance. Based on the results of Q × f values and the lineshapes of A1g(O) stretch mode, we found that the propagation of microwave energy in Ba(Mg1/3Ta2/3)O3 and Ba(Mg1/3Nb2/3)O3 shows weak damping behavior, however, Ba(Co1/3Nb2/3)O3 samples sintered at different temperature exhibit heavily damped behavior.  相似文献   

3.
Li2O–Nb2O5–TiO2 based ceramic systems have been the candidate materials for LTCC application, due to their high dielectric constant and Q × f value and controllable temperature coefficient in the microwave region. However, the sintering temperature was relatively higher (above 1100 °C) for practical application. In this study, dielectric properties of Li(1+xy)Nb(1−x−3y)Ti(x+4y)O3 solid solution were studied with different x and y contents and among them, the Li1.0Nb0.6Ti0.5O3 composition (x = 0.1, y = 0.1) was selected, due to its reasonable dielectric properties to determine the possibility of low temperature sintering. The effects of 0.17Li2O–0.83V2O5, as a sintering agent, on sinterability and microwave dielectric properties of Li1.0Nb0.6Ti0.5O3 ceramics were investigated as a function of the sintering agent content and sintering temperature. With addition of 0.17Li2O–0.83V2O5 above 0.5 wt%, the specimens were well densified at a relatively lower temperature of 850 °C. Only slight decrease in apparent density was observed with increasing 0.17Li2O–0.83V2O5 content above 0.75 wt%. In the case of 0.5 wt% 0.17Li2O–0.83V2O5 addition, the values of dielectric constant and Q × f reached maximum. Further addition caused inferior microstructure, resulting in degraded dielectric properties. For the specimens with 0.5 wt% 0.17Li2O–0.83V2O5 sintered at 850 °C, dielectric constant, Q × f and TCF values were 64.7, 5933 GHz and 9.4 ppm per °C, respectively.  相似文献   

4.
Dielectric properties of (Zn1/3Nb(2?x)/3Tax/3)0.5(Ti0.8Sn0.1Ge0.1)0.5O2 (x = 0, 1, 2) and/or (Zn1/3Nb1/3Tal/3)0.5(Ti0.8Sn0.2(l?y)Ge0.2y)0.5O2 (y = 0, 0.5, 1) were investigated at the microwave frequencies. For the compositions with single phase of rutile structure, the dielectric constant (K) of specimens was not only dependent on the dielectric polarizabilities, but also on the bond length ratio of apical bond (dapical) to equatorial bond (dequatorial) of oxygen octahedron in the unit cell. Temperature coefficients of the resonant frequencies (TCF) of the specimens with B = Nb5+ and/or M = Sn4+ was larger than those with B = Ta5+ and/or M = Ge4+. These results could be attributed to the changes of the degree of oxygen octahedral distortion. Quality factors (Qf) of the specimens with B = Ta5+ and/or M = Sn4+ were larger than those with B = Nb5+ and/or M = Ge4+.  相似文献   

5.
Microwave dielectric properties of the BaO–Ta2O5–TiO2 system were investigated by the solid-state reaction method. It was recognized that the Ba10Ta7.04(Ti1.2  xSnx)O30 solid solutions have the higher Q · f value in comparison with the Ba8(Ta4  xNbx)Ti3O24 solid solutions. The limit of the Ba10Ta7.04(Ti1.2  xSnx)O30 solid solutions was approximately x = 0.75; the lattice parameter c of the solid solutions, which is related to the change in the B(1)O6 octahedron, was significantly increased in the composition range from 0 to 0.75. The Q · f values of the Ba10Ta7.04(Ti1.2  xSnx)O30 solid solutions are remarkably improved by the Sn substitution for Ti; the highest Q · f value of 59,100 GHz is obtained at x = 0.75. Moreover, the ɛr and τf values of the Ba10Ta7.04(Ti1.2  xSnx)O30 solid solutions at x = 0.75 were 25.6 and 30.3 ppm/°C, respectively.  相似文献   

6.
Doping behaviors of NiO and Nb2O5 in BaTiO3 in two doping ways and dielectric properties of BaTiO3-based X7R ceramics were investigated. When doped in composite form, the additions rendered higher solubility than that doped separately due to the identical valence between the complex (Ni1/32+Nb2/35+)4+ and Ti4+. NiO–Nb2O5 composite oxide was more effective in broadening dielectric constant peaks which was responsible for the temperature-stability of BaTiO3 ceramics. A reduction in grain size was observed in the specimens with 0.5–0.8 mol% NiO–Nb2O5 composite oxide, whereas the abnormal growth of individual grains took place in the 1.0 mol% NiO–Nb2O5 composite oxide-doped specimen. When the specimen of BaTiO3 doped with 0.8 mol% NiO–Nb2O5 composite oxide was sintered at 1300 °C for 1.5 h in air, good dielectric properties were obtained and the requirement of (EIA) X7R specification with a dielectric constant of 4706 and dielectric loss lower than 1.5% were satisfied.  相似文献   

7.
Effect of excess CuO additive on the sintering behavior and piezoelectric properties of Bi0.5(Na82K0.18)0.5TiO3 ceramics was investigated. The addition of small amount of excess CuO as low as 1 mol% was quite effective to lower the sintering temperature (Ts) of BNKT ceramics down to 975 °C while their piezoelectric properties were degraded by Cu doping. However, the electric field-induced strain was markedly enhanced by further addition of Nb2O5 with CuO without elevating Ts. The normalized strain Smax/Emax of 427 pm/V was obtained with a specimen sintered with 0.02 mol CuO and 0.03 mol Nb2O5 in excess.  相似文献   

8.
The Influence of ZnB2O4 glass addition on the sintering temperature and microwave dielectric properties of Ba5Nb4O15 has been investigated using dilatometry, X-ray diffraction, scanning electron microscopy and network analyzer. It was found that a small amount of glass addition to Ba5Nb4O15 lowered the sintering temperature from 1400 to 900 °C. The reduced sintering temperature was attributed to the formation of ZnB2O4 liquid phase and B2O3-rich liquid phases such as Ba3B2O6. The Ba5Nb4O15 ceramics with ZnB2O4 glass, sintered at a low temperature, exhibited good microwave dielectric characteristics, i.e., a quality factor (Q × f) = 12,100 GHz, a relative dielectric constant (ɛr) = 40, a temperature coefficient of resonant frequency (τf) = 48 ppm/°C. The dielectric properties were discussed in terms of the densification of specimens and the influence of glassy phases such as Ba3B2O6 and ZnB2O4.  相似文献   

9.
Mg4Nb2O9/MgO and Mg4Ta2O9/MgO interfaces of definite crystallography were formed by topotaxial thin film solid state reactions in the systems MgO–Nb2O5 and MgO–Ta2O5. MgO (0 0 1) single crystal substrates, heated to different temperatures, were subjected to Nb–O and Ta–O vapors generated by e-beam evaporation in high vacuum. Thin films mainly containing the phases Mg4Nb2O9 and MgNb2O6, respectively Mg4Ta2O9 and MgTa2O6, were formed by gas–solid reactions. The crystallographic relationships between the product phases and the MgO substrate were systematically studied by X-ray diffractometry and transmission electron microscopy (TEM). Surprisingly pole figure analysis revealed more than one orientation relationship for some of the phases: Mg4Nb2O9 and Mg4Ta2O9 grew with (1 1 .4), (1 1 .6) and (1 1 .9) orientations, depending on temperature. Selected area diffraction patterns and high resolution TEM images show that these three orientations have a common Mg4(Nb/Ta)2O9 [11¯.0]/MgO [11¯0] axis and differ by the angle between the Mg4(Nb/Ta)2O9 (0 0 .1) and MgO (1 1 1) planes. Crystallographic illustrations of this phenomenon are given, and possible origins and consequences for the solid state reaction are discussed. Indications for two different interfacial reaction mechanisms are found.  相似文献   

10.
SrBi2Ta1.6Nb0.4O9 (SBTN) and SrBi2Ta2O9 (SBT) ceramics with typical bismuth layered perovskite structure were synthesized by hot-press sintering at 1000 °C for 2 h. The maximum relative density of as-sintered SBTN and SBT materials is 98.97%. The domain structure of SBTN and SBT was systemically characterized by means of TEM and HRTEM. The 90° domain walls were identified by the 90° rotation relationship of the electron diffraction pattern along the [0 0 1] zone axis. Irregular shaped and highly curved 180° domain wall were also observed in SBTN ceramics. The traditional α-fringes can be found in SBT, which are the evidence of large strains in hot-press sintering ceramics. Rod-like SrTa2O6 precipitates are also analyzed as well as its interface with the matrix.  相似文献   

11.
Precipitation-induced stimulated-healing of Nb2O5 was carried out through the extrinsic addition of silver oxide nanoscale elemental inclusions to form ternary oxides at the crack site. Nb2O5 cylindrical pellets, 13 mm in diameter and 10 mm in length, were produced from powders using a cold isostatic press. The pellets were subsequently sintered at 1100 °C. A scratch was created in the sintered Nb2O5 pellets and was subsequently filled with Ag2O. The pellets were annealed to stimulate the self-healing process. X-ray diffraction was used to explore the evolution of phases, chemical compositions, and structural properties of the sintered samples before and after the stimulated-healing process. Energy dispersive X-ray spectroscopy revealed the elemental composition in the healed region. The on-site composition of the healed sample was determined by Raman spectroscopy and was compared to the spectrum outside of the scratch. Raman spectroscopy confirmed that precipitation proceeded via the following chemical reaction which was facilitated at elevated temperature: Nb2O5 + Ag2O  2AgNbO3. In addition, a 3D reconstructed stylus profilometry image of the crack region confirmed that healing occurred. Healing by recovering 89% of the original material strength was confirmed using the three-point bend test.  相似文献   

12.
The acicular Sr0.39Ba0.48K0.32Nb2O6 single crystal particles were first prepared by the reaction of SrCO3, BaCO3 and Nb2O5 in molten K2SO4 at 1300 °C for 3 h. By using these single crystal particles as seeds and V2O5 as additives, textured Sr0.4Ba0.6Nb2O6 (SBN40) ceramics were obtained. The effect of V2O5 on sintering behaviour, microstructure and dielectric properties of textured SBN40 ceramics was investigated. The experimental results show that the addition of V2O5 can accelerate the densification rate of the material and encourage the texture of SBN40 ceramics, which further improves the anisotropy in dielectric properties between different directions of textured SBN40 ceramics.  相似文献   

13.
The effects of Bi2O3 addition on the microwave dielectric properties and the microstructures of Nb2O5-Zn0.95Mg0.05TiO3 + 0.25TiO2 (Nb-ZMT′) ceramics prepared by conventional solid-state routes have been investigated. The results of X-ray diffraction (XRD) indicate the presence of four crystalline phases, ZnTiO3, TiO2, Bi2Ti2O7, and (Bi1.5Zn0.5)(Ti1.5Nb0.5)O7 in the sintered ceramics, depending upon the amount of Bi2O3 addition. In addition, in order to confirm the existence of (Bi1.5Zn0.5)(Ti1.5Nb0.5)O7 phase in the samples, the microstructure of Nb-ZMT′ ceramic with 5 wt.% B2O3 addition was analyzed by using a transmission electron micrograph. The dielectric constant of Nb-ZMT′ samples was higher than ZMT′ ceramics. The Nb-ZMT′ ceramic with 5 wt.% Bi2O3 addition exhibits the optimum dielectric properties: Q × f = 12,000 GHz, ?r = 30, and τf = ?12 ppm/°C. Unlike the ZMT′ ceramic sintered at 900 °C, the Nb-ZMT′ ceramics show higher Q value and dielectric constant. Moreover, there is no Zn2TiO4 existence at 960 °C sintering. To understand the co-sinterability between silver electrodes and the Nb-ZMT′ dielectrics, the multilayer samples are prepared by multilayer thick film processing. The co-sinterability (900 °C) between silver electrode and Nb-ZMT′ dielectric are well compatible, because there are no cracks, delaminations, and deformations in multilayer specimens.  相似文献   

14.
Raman, X-ray diffraction and extended X-ray absorption fine structure (EXAFS) measurements of xBa(Ni1/3Ta2/3)O3 + (1  x)Ba(Mg1/3Ta2/3)O3 samples with x = 0–0.03 were performed to reveal the nickel doping effect on the microwave properties. EXAFS result clearly shows that the nickel is located on the Mg lattice site. We also found that, as the nickel concentration increases, microwave dielectric constant decreases with the TaO and NiO bond distances. X-ray diffraction shows that the 1:2 ordered structure is degraded with the increasing of nickel concentration. The stretching phonon of the TaO6 octahedra, that is A1g(O) phonon near 800 cm−1, are strongly correlated to the microwave properties of xBa(Ni1/3Mg2/3)O3 + (1  x)Ba(Mg1/3Ta2/3)O3 samples. The large Raman shift and the large width of the A1g(O) imply rigid but distorted oxygen octahedral structure, therefore, the effect of nickel doping lowers the dielectric constant and the Q × f value of Ba(Mg1/3Ta2/3)O3 ceramic.  相似文献   

15.
Weberites and pyrochlores (A2B2O7), both fluorite-related superstructures, are attractive dielectric ceramics due to their ability to accommodate diverse cations, thus allowing their properties to be tailored. This study focuses on the fundamental understanding of the structure–dielectric property relationships in fluorite-related oxides. Specifically, Ln3NbO7 and Ln2(Ln′0.5Nb0.5)2O7 (where the ionic radius of Ln′ is smaller than that of Ln) compounds are investigated. It has been previously shown that weberite-type Ln3NbO7 exhibits a composition dependent dielectric relaxation above room temperature. It is here shown that a dielectric relaxation also occurs in La2(Ln′0.5Nb0.5)2O7 (Ln′ = Yb3+, Er3+, and Dy3+) compounds near or below ?158 °C. The temperature, at which the maximum permittivity occurs, is different for different compositions (?132 °C for La2(Yb0.5Nb0.5)2O7, ?197 °C for La2(Er0.5Nb0.5)2O7, and ?187 °C for La2(Dy0.5Nb0.5)2O7 at 1 MHz) and is correlated with the distortion of the NbO6 octahedra. The room temperature dielectric permittivity of all three compounds was measured to be between 40 and 50 at 1 MHz.  相似文献   

16.
The effects of B2O3/CuO and BaCu(B2O5) additives on the sintering temperature and microwave dielectric properties of Ba2Ti9O20 ceramics were investigated. The B2O3 added Ba2Ti9O20 ceramics were not able to be sintered below 1000 °C. However, when both CuO and B2O3 were added, they were sintered below 900 °C and had the good microwave dielectric properties. It was suggested that a liquid phase with the composition of BaCu(B2O5) was formed during the sintering and assisted the densification of the Ba2Ti9O20 ceramics at low temperature. BaCu(B2O5) powders were produced and used to reduce the sintering temperature of the Ba2Ti9O20 ceramics. Good microwave dielectric properties of Qxf = 16,000 GHz, ɛr = 36.0 and τf = 9.11 ppm/°C were obtained for the Ba2Ti9O20 ceramics containing 10.0 mol% BaCu(B2O5) sintered at 875 °C for 2 h.  相似文献   

17.
Polycrystalline calcium phosphate ((Cl/OH)Ap = Ca5(PO4)3(OH/Cl); TCP = Ca3(PO4)2) fibres were prepared from aqueous solutions of calcium chloride and phosphoric acid using poly(ethylene oxide) (PEO) as spinning aid. Generation of nonwoven materials was accomplished via rotary jet spinning. Polycrystalline (Cl/OH)Ap fibres 10–25 μm in diameter were obtained with 37% ceramic yield by pyrolysis of the green fibres followed by sintering at 1150 °C in air. X-ray diffraction (XRD) analysis provided evidence for apatite formation starting at 650 °C while (Cl/OH)Ap ceramic fibres were obtained at 1100 °C via transformation through intermediate dicalcium dichloride hydrogen phosphate (Ca2Cl2(HPO4)) and calcium pyrophosphate (Ca2P2O7) phases. A glass-forming Al-based additive was applied to enhance the mechanical properties of the Cl/OH)Ap ceramic fibres and indeed resulted in the formation of (Cl/OH)Ap/Al2O3 fibres with improved mechanical stability. Finally, TCP, (Cl/OH)Ap and (Cl/OH)Ap/Al2O3 fibres were subjected to seeding with mesenchymal stem cells. Negligible cytotoxicity is observed.  相似文献   

18.
Fifteen kinds of sodium rare earth silicate glasses and ceramics with (Na2O)35.7(RE2O3)7.2(SiO2)57.1 (RE = Y, Sm, Gd, Dy, Ho, Er and Yb) composition were synthesized from a mixture of Na2CO3, RE2O3 and SiO2. The densities of the glasses were in fairly good agreement with the theoretical densities and were 0.2–0.41 g cm−3 larger than those of the polycrystalline ceramics. The conductivities of the glasses are 1–2 orders lower than those of the ceramics and the highest electrical conductivity was achieved for the Yb ceramic sample with the smallest ion radius of RE3+. The electromotive force, EMF, of the potentiometric CO2 gas sensors using (Na2O)35.7(Y2O3)7.2(SiO2)57.1 glass and ceramic increased linearly with an increase in the logarithm of CO2 partial pressure, in accordance with Nernst's law. It was suggested from the slope of Nernst's equation that the two electron-transfer reaction associated with the carbon dioxide molecule takes place at the detection electrode above 450 °C.  相似文献   

19.
V2O5/Nb2O5 catalysts with various V2O5 contents were prepared by impregnation and characterized by various techniques in detail. Oxidative dehydrogenation of ethane was carried out in a fixed bed quartz reactor at 500–600 °C. XPS analysis indicated a clear enrichment of vanadium on the near-surface-region and UV–vis diffuse reflectance spectroscopy revealed the nature of VOx structures formed. 10 wt.% V2O5/Nb2O5 catalyst has displayed the best performance (X = 28%, S = 38% at 600 °C) due to enrichment of vanadium in the near-surface-region and formation of optimum amount of monomeric/oligomeric VOx species.  相似文献   

20.
The effects of structural characteristics on the dielectric properties of (Zn1/3A2/3)0.5(Ti1?xBx)0.5O2 (A = Nb5+, Ta5+, B = Ge4+, Sn4+) (0.1  x  0.3) ceramics were investigated at microwave frequency. The sintered specimens showed solid solutions with a tetragonal rutile structure within the solid solution range of compositions. With an increase of BO2, the temperature coefficient of resonant frequency (TCF) and dielectric constant (K) decreased with a decrease of oxygen octahedral distortion and dielectric polarizabilites, respectively. However, the quality factor (Qf) of the sintered specimens was increased with BO2 due to the reduction of Ti4+ ions. The Qf value of the specimens with A = Ta was higher than that of the specimens with A = Nb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号