首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using WC as sintering aid, nearly full dense (~99%) HfB2–20 vol% SiC ceramics were sintered at 2200 °C for 2 h without external pressure. The densification mechanism, microstructure evolution, mechanical properties and oxidation resistance were investigated. The results indicated that complex chemical reactions of WC in HfB2–SiC system strongly related to the densification, microstructure and properties. The Young's modulus, fracture toughness and 3-pt bending strength of HfB2–20 vol% SiC with 10 wt% WC were 511 GPa, 4.85 Mpa m1/2 and 563 MPa, respectively, which were comparable to some hot pressed HfB2–SiC ceramics in literature. The oxidation of HfB2–20 vol% SiC with 10 wt% WC at 1500 °C in air exhibited parabolic kinetics. After oxidation at 1500 °C for 10 h, its weight gain and SiC-depleted layer thickness were 3.7 mg/cm2 and 43 μm, respectively, and its residual flexural strength was comparable to or even a little higher than the value before oxidation.  相似文献   

2.
HfB2 and HfB2–10 vol% HfC fine powders were synthesized by carbo/boronthermal reduction of HfO2, which showed high sinterability. Using the as-synthesized powders and commercially available SiC as starting powders, nearly full dense HfB2–20 vol% SiC (HS) and HfB2–8 vol% HfC–20 vol% SiC (HHS) ceramics were obtained by hot pressing at 2000 °C/30 MPa. With the incorporation of HfC, the grain size of HHS was much finer than HS. As well, the fracture toughness and bending strength of HHS (5.09 MPa m1/2, 863 MPa) increased significantly compared with HS (3.95 MPa m1/2, 654 MPa). Therefore, it could be concluded that the incorporation of HfC refined the microstructure and improved the mechanical properties of HfB2–SiC ceramics.  相似文献   

3.
The oxidation behavior for ZrB2–20 vol% SiC (ZS20) and ZrB2–30 vol% SiC (ZS30) ceramics at 1500 °C was evaluated by weight gain measurements and cross-sectional microstructure analysis. Based on the oxidation results, laminated ZrB2–30 vol% SiC (ZS30)/ZrB2–25 vol% SiC (ZS25)/ZrB2–30 vol% SiC (ZS30) symmetric structure with ZS30 as the outer layer were prepared. The influence of thermal residual stress and the layer thickness ratio of outer and inner layer on the mechanical properties of ZS30/ZS25/ZS30 composites were studied. It was found that higher surface compressive stress resulted in higher flexural strength. The fracture toughness of ZS30/ZS25/ZS30 laminates was found to reach to 10.73 MPa m1/2 at the layer thickness ratio of 0.5, which was almost 2 times that of ZS30 monolithic ceramics.  相似文献   

4.
Oxidation behavior and effect of oxidation on the room-temperature flexural strength were investigated for ZrB2–10 vol% SiC (ZB10S) and ZrB2–30 vol% SiC (ZB30S) in air at 1500 °C with times ranging from 0.5 h to 10 h. The oxide scale of both ZB10S and ZB30S was composed of an outer glassy layer and an inner extended SiC-depleted layer. The changes in weight gain, glass layer thickness, and extended SiC-depleted layer thickness with oxidation were measured. Analysis suggested that the extended SiC-depleted layer was most indicative for evaluating the oxidation resistance. Compared to the ZB10S, the improved oxidation resistance in ZB30S was attributed to the viscosity increase of glassy layer and the lower number of ZrO2 inclusions in the glassy layer. Because of the healing of surface flaws by the glassy layer, the strength increased significantly by ~110% for ZB10S and by ~130% for ZB30S after oxidation for 0.5 h.  相似文献   

5.
《Ceramics International》2017,43(15):12005-12012
To improve the ablation resistance of SiC coating, HfB2-SiC coating was prepared on SiC-coated carbon/carbon (C/C) composites by in-situ reaction method. Owing to the penetration of coating powders, there is no clear boundary between SiC coating and HfB2-SiC coating. After oxyacetylene ablation for 60 s at heat flux of 2400 kW/m2, the mass ablation rate and linear ablation rate of the coated C/C composites were only 0.147 mg/s and 0.267 µm/s, reduced by 21.8% and 60.0%, respectively, compared with SiC coated C/C composites. The good ablation resistance was attributed to the formation of multiple Hf-Si-O glassy layer including SiO2, HfO2 and HfSiO4.  相似文献   

6.
The oxidation performance of ZrB2–SiC ultra-high temperature ceramics with SiC content ranging from 20 to 80 vol% has been evaluated at 1773 K for 50 h and at 2073 K for 20 min. Oxidation reaction pathways were interpreted using volatility diagrams of the ZrB2–SiC system. At 1773 K for 50 h, all ZrB2–SiC composites from 20 to 80 vol% SiC formed a protective SiO2 surface coating. Samples with ≤50 vol% SiC developed a distinguishable SiC-depleted layer at 1773 K and 2073 K. High temperature torch testing for 20 min at approximately 2073 K revealed that samples with ≥65 vol% SiC exhibit a depression under the torch flame. Samples rich in ZrB2 were dominated by a ZrO2 layer after a similar exposure. The overall weight density of ultra-high temperature ceramics can be reduced with improved oxidation performance at 1773 K by adding at least 65 vol% SiC.  相似文献   

7.
《Ceramics International》2017,43(11):8081-8088
Rapid oxidation testing for monolithic ZrB2 and ZrB2–SiC binary composites with different SiC contents (0–30 vol%) was performed using an electric heating system above 2000 °C. The system used in this study achieved the high heating rate of 250 °C/s. The experimental results showed that the morphologies of the oxidized specimens depended strongly on the SiC content. The formation mechanism of SiC-depleted layers beneath the surface scale above 2000 °C differed completely from that below 2000 °C. Although the holding time was below 10 s, SiC-depleted layers were formed because the oxygen partial pressure of the air atmosphere was not enough to form SiO2 by the oxidation of SiC. It was determined that ZrB2–20 vol% SiC showed the best oxidation resistance above 2000 °C at high heating rates.  相似文献   

8.
《Ceramics International》2016,42(7):8000-8004
B4C–30 vol% ZrB2 and B4C–30 vol% ZrB2–10 vol% SiC ceramics were prepared using hot pressing, and their room temperature flexural strength, high temperature flexural strength and oxidation behavior were investigated and compared each other. Both room temperature and high temperature flexural strength were improved by adding SiC particles. The oxidation mechanism was also studied, showing the oxidation product of SiC sealed the porosity and cracks, which was helpful to high temperature strength and oxidation resistance improvement.  相似文献   

9.
《Ceramics International》2016,42(3):4212-4220
To improve the oxidation protective ability of SiC–MoSi2–ZrB2 coating for carbon/carbon (C/C) composites, pre-oxidation treatment and pack cementation were applied to construct a buffer interface layer between C/C substrate and SiC–MoSi2–ZrB2 coating. The tensile strength increased from 2.29 to 3.35 MPa after pre-oxidation treatment, and the mass loss was only 1.91% after oxidation at 1500 °C for 30 h. Compared with the coated C/C composites without pre-oxidation treatment, after 18 thermal cycles from 1500 °C and room temperature, the mass loss was decreased by 30.6%. The improvements of oxidation resistance and mechanical property are primarily attributed to the formation of inlaid interface between the C/C substrate and SiC–MoSi2–ZrB2 coating.  相似文献   

10.
《Ceramics International》2017,43(3):3238-3245
In this study, SiC coating for C/C composites was prepared by pack cementation method at 1773 K, and MoSi2-SiOC-Si3N4 as an outer coating was successfully fabricated on the SiC coated samples by slurry method at 1273 K. The microstructure and phase composition of the coatings were analyzed. Results showed that a porous β-SiC inner coating and a crack-free MoSi2-SiOC-Si3N4 coating are formed. Effect of Si3N4 content on the oxidation resistance of the coated C/C composites at 1773 K in air was also investigated. The weight loss curves revealed that introducing the appropriate proportion of Si3N4 could improve the oxidation resistance of coating. The MoSi2-SiOC/SiC coated C/C sample had an accelerated weight loss after oxidation in air for 20 h. However, the coating containing 45% Si3N4 could protect C/C composition from oxidation for 100 h with a minute weight loss of 0.63%.  相似文献   

11.
Current generation carbon–carbon (C–C) and carbon–silicon carbide (C–SiC) materials are limited to service temperatures below 1800 °C and materials are sought that can withstand higher temperatures and ablative conditions for aerospace applications. One potential materials solution is carbon fibre-based composites with matrices composed of one or more ultra-high temperature ceramics (UHTCs); the latter are intended to protect the carbon fibres at high temperatures whilst the former provides increased toughness and thermal shock resistance to the system as a whole. Carbon fibre–UHTC powder composites have been prepared via a slurry impregnation and pyrolysis route. Five different UHTC compositions have been used for impregnation, viz. ZrB2, ZrB2–20 vol% SiC, ZrB2–20 vol% SiC–10 vol% LaB6, HfB2 and HfC. Their high-temperature oxidation resistance has been studied using a purpose built oxyacetylene torch test facility at temperatures above 2500 °C and the results are compared with that of a C–C benchmark composite.  相似文献   

12.
Camphene-based freeze casting technique was adopted to fabricate ZrB2–SiC porous ceramic with 3-dimensional (3D) pore network. ZrB2–SiC/camphene slurries (initial solid loading: 20 vol%, 25 vol% and 30 vol%) were prepared for freeze casting. Regardless of initial solid loading, the fabricated sample had dense/porous dual microstructure. The thickness of dense layer was about 200–300 μm. The microstructures of ZrB2–SiC porous ceramics were significantly influenced by the initial solid loading, which determines the pore size, porosity and mechanical properties of the final products.  相似文献   

13.
This study aims at observing and understanding the oxidation mechanisms of ZrB2-20 vol%SiC (ZS), HfB2-20 vol%SiC (HS) and HfB2-20 vol%SiC- 3 vol%Y2O3 (HSY) materials up to 2400 °C under water vapour conditions. After SPS sintering, fully densified samples were oxidized at several temperatures with 30 vol% H2O/70 vol% Ar during 20 s. Weight variations as well as post-test microstructural and XRD analyses allowed understanding the influence of the composition on the oxidation behavior and the evolution of each oxide sublayer. Below 1550 °C, oxidation is limited, and thin oxide layers are observed. At 1900 and 2200 °C, ZS and HS show mechanical damage (cracks, spallation), while HSY keeps its structural integrity and interlayer adherence. The addition of Y2O3 reduces the damages due to thermal stresses in the material due to the stabilization of the cubic phase of HfO2, and the formation of a Y2Si2O7 interphase that mitigates thermal expansion mismatch between the SiC-depleted layer and the HfO2 layer.  相似文献   

14.
Dense ZrB2 containing 15 vol.% SiC and 15 vol.% graphite was exposed to flowing air at 1500 °C. A layered scale structure developed that consisted of (1) a uniform SiO2-rich layer on the surface, (2) a layer of ZrO2 and SiO2, (3) a layer of ZrO2 (4) a partially oxidized layer composed of porous ZrB2, ZrO2, and graphite, and (5) unaffected ZrB2–SiC–C. A thermodynamic model based on volatility diagrams and consistent with the experimental observations was constructed to explain the development of the layered structure. Oxidation behavior was consistent with passive oxidation and formation of a protective surface layer. Analysis indicated that it may not be possible to form a protective surface layer without actively oxidizing SiC and producing a porous partially oxidized layer between the outer protective layer and the underlying unoxidized material.  相似文献   

15.
《Ceramics International》2016,42(11):12573-12580
To improve the oxidation resistance of carbon/carbon (C/C) composites at high temperature, a SiC nanowire-toughened MoSi2-WSi2-SiC-Si multiphase coating was prepared by chemical vapor deposition (CVD) and pack cementation. The microstructure, mechanical properties and oxidation resistance of the coating were investigated. After the introduction of SiC nanowires, the elastic modulus, hardness, and fracture toughness of the MoSi2-WSi2-SiC-Si coating were increased by 25.48%, 4.09% and 45.03%, respectively. The weight loss of the coated sample with SiC nanowires was deceased from 4.83–2.08% after thermal shock between 1773 K and room temperature for 30 cycles and the weight loss is only 3.24% after isothermal oxidation at 1773 K in air for 82 h. The good oxidation resistance of the coating is mainly attributed to that SiC nanowires can effectively inhibit the propagation of cracks in the coating by the toughening mechanisms including bridging and pull-out.  相似文献   

16.
A SiC/Si/MoSi2 multi-coating for graphite materials was prepared by a two-step technique. SiC whisker reinforcement coating was produced by pyrolysis of hydrogen silicone oil (H-PSO) at 1600 °C, and then the dense coating was formed by embedding with the powder mixture of Si, graphite and MoSi2 at 1600 °C in argon atmosphere. The microstructure, thickness, phase and oxidation resistance of the coating were investigated. Research results showed that, the phase of multi-coating was composed of SiC, Si and MoSi2. The thickness of the coating was about 300 μm. In addition, the coating combined with matrix well, and surface was continuous and dense. The oxidation pretreatment experiment was carried out in the static air at 1400 °C for 4 h before thermal failure tests and the specimens had 0.045% weight gain. Subsequent thermal failure tests showed that, the SiC/Si/MoSi2 multi-coating had excellent anti-oxidation property, which could protect graphite materials from oxidation at 1000 °C in air for 12 h and the corresponding weight loss was below 1 wt%. Based on the surface morphology changes, oxidation pretreatment experiment and thermal failure tests enhanced densification of multi-coating and the coating had a certain self-healing ability.  相似文献   

17.
Oxidation behavior of hot forged textured ZrB2–20 vol% MoSi2 ceramics with platelet ZrB2 grains was investigated at 1500 °C for exposure time from 0.5 to 12 h. Compared to untextured ceramics, the textured ceramics showed obvious anisotropic oxidation behavior and the surface normal to the hot forging pressure demonstrated better oxidation resistance. Such improvement in the oxidation resistance is primarily considered as a higher intrinsic ZrB2 atomic density on the orientated {0 0 l} planes in the textured ceramics. It is expectable that the anisotropic textured ZrB2–MoSi2 ceramics can offer better oxidation resistance when a certain surface with higher oxidation resistance is exposed to air at elevated temperature.  相似文献   

18.
Ultra-high temperature ceramics having melting points above 3500 K and high thermal conductivities are envisaged as future receivers of concentrating solar power plants. The high pressure and solar temperature reactor (Réacteur Hautes Pression et Température Solaire, REHPTS) implemented at the focus of the Odeillo 5 kW solar furnace was used to investigate the oxidation of three refractory carbides containing different sintering additives (HfC/MoSi2, ZrC/MoSi2, ZrC/TaSi2) that could be considered as promising candidates. The concentration of the additive, TaSi2 or MoSi2, was 20 vol%. Each kind of sample was oxidized in air for 20 min at 1800, 2000 and 2200 K. Experiments were filmed using a video camera and the gaseous phases were analyzed in situ by mass spectrometry. Various post-test characterizations have shown that the nature of the carbide and additive strongly affects the composition of the oxide layer and therefore the high-temperature behaviour.  相似文献   

19.
Non-isothermal, isothermal and cyclic oxidation behavior of hot pressed ZrB2–20 (vol.%) SiC (ZS) and HfB2–20 SiC (HS) composites have been compared. Studies involving heating in thermogravimetric analyzer have shown sharp mass increases at 740 and 1180 °C for ZS, and mass gain till 1100 °C followed by loss for HS. Isothermal oxidation tests for 1, 24 and 100 h durations at 1200 or 1300 °C have shown formation of partially and completely stable oxide scales after ~24 h exposure for ZS and HS, respectively. X-ray diffraction, scanning electron microscopy and energy or wavelength dispersive spectroscopy has confirmed presence of ZrO2 or HfO2 in oxide scales of ZS or HS, respectively, besides B2O3–SiO2. Degradation appears more severe in isothermally oxidized ZS due to phase transformations in ZrO2; and is worse in HS on cyclic oxidation at 1300 °C with air cooling, because of higher thermal residual stresses in its oxide scale.  相似文献   

20.
MoSi2, MoSi2–10 vol.% Al2O3, MoSi2–30 vol.% Al2O3 (denoted as MA0, MA1, MA3, respectively) coatings were fabricated by vacuum plasma spraying (VPS), and their oxidation behavior was examined at low temperature (500 °C) and high temperature (1500 °C). The test at 500 °C showed that the addition of Al2O3 effectively restrained the pest oxidation of MoSi2. The MA1 coating had satisfactory fluid surface and presented good oxidation resistance at 1500 °C. However, the MA3 coating showed worse oxidation resistant behavior compared with the MA0 coating because of mullite formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号