首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An asymmetric supercapacitor with high energy and power densities has been fabricated using MnO2/carbon nanofiber composites as positive electrode and activated carbon nanofibers as negative electrode in Na2SO4 aqueous electrolyte. Both electrode materials are freestanding in nature without any conductive additives or binders and exhibit outstanding electrochemical performances. The as-assembled asymmetric supercapacitor with optimal mass ratio can be operated reversibly over a wide voltage range of 0–2.0 V, and presents a maximum energy density of 30.6 Wh kg−1, which is much higher than those of symmetric supercapacitors. Moreover, the supercapacitor exhibits excellent rate capability (high power density of 20.8 kW kg−1 at 8.7 Wh kg−1) and long-term cycling stability with only 6% loss of its initial capacitance after 5000 cycles. These attractive results make these freestanding materials promising for applications in aqueous electrolyte-based asymmetric supercapacitors with high energy and power densities delivery.  相似文献   

2.
A carbon material consisting of hollow carbon spheres anchored on the surface of carbon nanotubes (CNT–HCS) has been synthesized by an easy chemical vapor deposition process using a CNT–MnO2 hybrid as template. An electrode made of this material exhibits a maximum specific capacitance of 201.5 F g−1 at 0.5 A g−1 and excellent rate performance (69% retention ratio at 20 A g−1). It has impressive cycling stability with 90% initial capacitance retained after 5000 cycles at 5 A g−1 in 6 mol L−1 KOH. Symmetric supercapacitors based on CNT–HCS achieve a maximum energy density of 11.3 W h kg−1 and power density of 11.8 kW kg−1 operated within a wide potential range of 0–1.6 V in 1.0 mol L−1 Na2SO4 solution.  相似文献   

3.
《Ceramics International》2017,43(2):2155-2164
The development of wearable electronics has created a surge of interest in designing flexible energy storage device with high energy density and long lifespan. In this work, we have successfully fabricated a flexible asymmetric supercapacitor (ASC) based on the NiCo2S4@NiCo2O4 nanocolumn arrays (NCAs). The nickel cobalt sulfide/oxide core-shell nanostructures were rationally synthesized through a facile stepwise approach. The NiCo2S4@NiCo2O4 NCAs based electrode delivered a high specific capacitance of 2258.9 F g−1 at a current density of 0.5 A g−1. The as-assembled flexible ASC device exhibited a high energy density of 44.06 Wh kg−1, a high power density of 6.4 kW kg−1, and excellent cycling stability by retaining 92.5% after 6000 cycles. Excitingly, the electrochemical property of the ASC device could be maintained under severe bending, indicating superior flexibility and mechanical stability. The NiCo2S4@NiCo2O4 core-shell NCAs possess enormous potential for future wearable electronic applications.  相似文献   

4.
Two-dimensional mesoporous carbon sheet-like framework (MCSF) material has been prepared using mesoporous SiO2 nanosheet as template and coal tar pitch as carbon precursor. MCSF sheets consisting of numerous mesopores have a specific surface area of 582.7 m2 g−1. As a result, the MCSF electrode possesses a maximum specific capacitance of 264 F g−1 at 5 mV s−1, excellent rate capability (74% retention ratio at 1000 mV s−1), and impressive cycling stability with 91% initial capacitance retained after 5000 cycles at 200 mV s−1 in 6 mol L−1 KOH. MCSF symmetric supercapacitor exhibits a maximum energy density of 9.6 Wh kg−1 at 5 mV s−1 and a maximum power density of 119.4 kW kg−1 based on the total mass of the two electrodes in 1 mol L−1 Na2SO4 electrolyte.  相似文献   

5.
Three-dimensional (3D) thermal reduced graphene network (TRGN) deposition on Ni foam without any conductive agents and polymer binders was successfully synthesized by dipping Ni foam into graphene oxide (GO) suspension and subsequent thermal reduction process. The direct and close contact between thermal reduced graphene and Ni foam is beneficial to the enhanced conductivity of the electrode, as well as the improvement of ion diffusion/transport into the electrode. Additionally, low-temperature reduction of GO possesses a large amount of stable oxygen-containing groups that can provide high pseudocapacitance. As a result, the TRGN electrode delivers a high specific capacitance of 442.8 F g−1 at 2 mV s−1 in 6 mol L−1 KOH. Moreover, symmetric supercapacitor based on TRGN exhibits a maximum energy density of 30.4 Wh kg−1 based on the total mass of the two electrodes in 1 mol L−1 Na2SO4 electrolyte, as well as excellent cycling stability with 118% of its initial capacitance after 5000 cycles.  相似文献   

6.
A facile co-precipitation strategy is developed to prepare nickel hexacyanoferrate nanocubes (NiHCF NBs) supported on the reduced graphene oxide (rGO) in the presence of poly(diallyldimethylammonium chloride) (PDDA). The NiHCF NBs are uniformly deposited on the rGO by electrostatic interaction. Their size can be tuned from 10 nm to 85 nm by changing their content from 32.6% to 68.2%. Under the optimal condition, NiHCF/PDDA/rGO hybrids are composed of 51.4% NiHCF NBs with an average size of 38 nm. The specific capacitance of NiHCF/PDDA/rGO hybrids reaches up to 1320 F g−1 at a discharge density of 0.2 A g−1, more than twice that of the pure NiHCF, as well as slight capacitance decay by 15% at 0.2 A g−1 and excellent cycling stability with 87.2% of its initial capacitance after 10,000 discharge/charge cycles. More importantly, NiHCF/PDDA/rGO hybrids exhibit an ultrahigh energy density of 58.7 Wh kg−1 at the power density of 80 W kg−1. The superior storage energy performance of NiHCF/PDDA/rGO hybrids, such as high specific capacitance, good rate capacity and long cycling stability, positions them as a promising candidate for supercapacitor materials.  相似文献   

7.
《Ceramics International》2016,42(11):12644-12650
Hierarchical nickel oxide/graphene oxide (NiO/GO) and nickel oxide/graphene oxide/silver (NiO/GO/Ag) heterostructures were sucessfully fabricated as high-performance supercapacitors electrode materials by using a hydrothermal process and a photoreduction process. The experimental results showed that the NiO/GO/Ag heterostructure electrodes showed better electrochemical performance than those of NiO/GO and bare NiO nanosheets. The NiO/GO/Ag electrode exhibited a higher specific capacitance of 229 F g−1 at a current density of 1 A g−1, higher than that of 161 F g−1 for NiO/GO composites. Furthermore, NiO/GO/Ag electrode also showed good rate capability (still 200 F g−1 at 6 A g−1) and cycling stability (24% loss after 2000 repetitive cycles at a scan rate of 20 mV s−1). The enhanced capacitive performance of the NiO/GO/Ag composites was mainly attributed to the introduction of Ag nanoparticles, which increased the electrical conductivities of the composites, and promoted the electron transfer between the active components. This study suggested that NiO/GO/Ag composites were a promising class of electrode materials for high performance energy storage applications.  相似文献   

8.
N-enriched mesoporous carbon nanofibers (NMCNFs) were prepared by an electrospinning technique using graphitic carbon nitride (g-C3N4) nanosheets both as sacrificial template and N-doping source. The resultant NMCNF film has a high N-doping level of 8.6 wt% and a high specific surface area of 554 m2 g−1. When directly used as the electrode material for supercapacitor, the free-standing NMPCNF film shows a significantly improved capacitive performance including a higher specific capacitance (220 F g−1 at 0.2 A g−1) and a better rate capability (∼70% retention at 20 A g−1) than those of microporous carbon nanofiber film prepared using the same process without using g-C3N4 nanosheets (145 F g−1 at 0.2 A g−1 and ∼45% retention at 20 A g−1). Moreover, the NMCNFs show superior stability with only a ∼3% decrease of its initial capacitance after 1000 cycles at a high current density of 10 A g−1. More significantly, the energy density of a symmetrical supercapacitor (SC) based on the NMPCNF film can reach 12.5 Wh kg−1 at a power density of 72 W kg−1.  相似文献   

9.
《Ceramics International》2016,42(9):10719-10725
Hierarchical Co3O4@CoWO4/rGO core/shell nanoneedles arrays are successfully grown on 3D nickel foam using a simple, effective method. By virtue of its unique structure, Co3O4@CoWO4/rGO demonstrates an enhanced specific capacitance of 386 F g−1 at 0.5 A g−1 current density. It can be used as an integrated, additive-free electrode for supercapacitors that boasts excellent performance. As illustration, we assemble an asymmetric supercapacitor (ASC) using the as-prepared Co3O4@CoWO4/rGO as the positive electrode and activated carbon as the negative electrode. The optimized ASC displays a maximum energy density of 19.99 Wh kg−1 at a power density of 321 W kg−1. Furthermore, the ASC also presents a remarkably long cycle life along with 88.8% specific capacitance retention after 5000 cycles.  相似文献   

10.
Manganese dioxide/carbon nanocomposites with partially graphitized hierarchical porous structure have been designed and synthesized. A high specific capacitance of 412 F g−1 and excellent rate capability of these composites can be achieved owing to the interconnected meso- and micro-porous structure and the graphitic pore walls facilitating the ion diffusion and electron transportation, respectively, which is highly demanded for high-performance supercapacitor electrodes materials. Even at a high scan rate of 100 mV s−1, a specific capacitance of 251 F g−1 can be obtained, corresponding to 61% capacitance retention. Moreover, a long cycling stability with initial capacitance retention of ∼88% is obtained after over 4000 cycles at a current density of 1.0 A g−1. This work presents an efficient electrode materials design and a novel composite which holds great promise in high-performance supercapacitor applications.  相似文献   

11.
《Ceramics International》2017,43(8):6554-6562
In order to improve the electrochemical performance of lithium titanium oxide, Li4Ti5O12 (LTO), for the use in the lithium-ion capacitors (LICs) application, LTO/graphene composites were synthesized through a solid state reaction. The composite exhibited an interwoven structure with LTO particles dispersed into graphene nanosheets network rather than an agglomerated state pristine LTO particles. It was found that there is an optimum percentage of graphene additives for the formation of pure LTO phase during the solid state synthesis of LTO/graphene composite. The effect of graphene nanosheets addition on electrochemical performance of LTO was investigated by a systemic characterization of galvanostatic cycling in lithium and lithium-ion cell configuration. The optimized composite exhibited a decreased polarization upon cycling and delivered a specific capacity of 173 mA h g−1 at 0.1 C and a well maintained capacity of 65 mA h g−1 even at 20 C. The energy density of 14 Wh kg−1 at a power density of 2700 W kg−1 was exhibited by a LIC full cell with a balanced mass ratio of anode to cathode along with a superior capacitance retention of 97% after 3000 cycles at a current density of 0.4 A g−1. This boost in reversible capacity, rate capability and cycling performance was attributed to a synergistic effect of graphene nanosheets, which provided a short lithium ion diffusion path as well as facile electron conduction channels.  相似文献   

12.
《Ceramics International》2016,42(8):9717-9727
Nitrided lithium titanate (N-Li4Ti5O12) nanoarrays with nanowire and nanotube structures were designed as the electrode materials of lithium-ion supercapacitor for electrochemical energy storage. Two types of TiO2 nanoarrays were used as the precursor which involved TiO2 nanowire array prepared by hydrothermal process and TiO2 nanotube array prepared by anodization process. Li4Ti5O12 nanoarrays were formed through hydrothermal reaction or sonochemical reaction of TiO2 nanoarrays with lithium hydroxide and then calcination treatment process. Finally, N-Li4Ti5O12 nanoarrays were formed through nitriding treatment of Li4Ti5O12 using ammonia as nitrogen source. The electroactive N-Li4Ti5O12 nanowire array and nanotube array exhibited the specific capacitance of 607.2 F g−1 and 814.4 F g−1 at a current density of 1 A g−1, respectively. The corresponding capacitance retention was determined to be 92.1% and 94.2% after 1000 cycles at high current density of 5 A g−1. The corresponding capacitance still kept 182.9 and 352.1 F g−1 at much higher current density of 20 A g−1, presenting reasonable rate capability for N-Li4Ti5O12 nanoarrays. The improved capacitance performance of N-Li4Ti5O12 nanotube array was ascribed to the more amount of TiN and more accessible nanotube surface area, which contributed to the improved conductivity and fast diffusion of electrolyte ions on the surface of electrode. Both N-Li4Ti5O12 nanowire array and nanotube array with well-aligned integrative structure exhibited an excellent cycling stability during continuous charge/discharge process. Well-designed N-Li4Ti5O12 nanoarrays with high capacitance, good cycling stability and rate capability presented the promising application as feasible electrode materials of lithium-ion supercapacitors for the energy storage.  相似文献   

13.
《Ceramics International》2017,43(15):11967-11972
Stabilizing the layer structures of Mo-based anode materials is still a challenge for Li ion batteries. Herein, we proposed an electrochemical presodiation strategy for MoS2 and MoO3 to improve their cycling stability. It is interesting to note that the cycling stability of as-treated MoS2 and MoO3 was significantly improved. Although the reversible discharge capacity was slightly decreased, the capacity of the pretreated MoS2 at 300 mA g−1 was retained at 345 mA h g−1 after 100 cycles while that of the pristine one decreased to 151 mA h g−1. The capacity of the pretreated MoO3 after 60 cycles was also improved from 275 mA h g−1 (the pristine one) to 460 mA h g−1. The stabilizing effect was further verified by scanning electron microscope (SEM) analysis. Electrochemical presodiation here could be a promising modification strategy for Mo-based anode materials.  相似文献   

14.
《Ceramics International》2016,42(10):11851-11857
Low-cost dynamic materials for Faradaic redox reactions are needed for high-energy storage supercapacitors. A simple and cost-effective hydrothermal process was employed to synthesize amaryllis-like NiCo2S4 nanoflowers. The sample was characterized by X-ray powder diffraction, Brunauer–Emmett–Teller method, scanning electron microscopy, and transmission electron microscopy. NiCo2S4 nanoflowers were coated onto carbon fiber fabric and used as a binder-free electrode to fabricate a solid-state supercapacitor compact device. The solid-state supercapacitor exhibited excellent electrochemical performance, including high specific capacitance of 360 F g−1 at scan rate of 5 mV s−1 and high energy density of 25 W h kg−1 at power density of 168 W kg−1. In addition, the supercapacitor possessed high flexibility and good stability by retaining 90% capacitance after 5000 cycles. The high conductivity and Faradic-redox activity of NiCo2S4 nanoflowers resulted in high specific energy and power. Thus, NiCo2S4 nanoflowers are promising pseudocapacitive materials for low-cost and lightweight solid-state supercapacitors.  相似文献   

15.
《Ceramics International》2017,43(2):1968-1974
3D network-like porous MnCo2O4 nanostructures have been successfully fabricated through a facile and scalable sucrose-assisted combustion route followed by calcination treatment. Benefiting from its advantages of the unique 3D network-like architectures with large specific surface area (216.15 m2 g−1), abundant mesoporosity (2–50 nm) and high electronic conductivity, the as-prepared MnCo2O4 electrode displays a high specific capacitance of 647.42 F g−1 at a current density of 1 A g−1, remarkable capacitance retention rate of 70.67% at current density of 10 A g−1 compared with 1 A g−1, and excellent cycle stability (only 6.32% loss after 3000 cycles). The excellent electrochemical performances coupled with facile and cost effective method will render the as-fabricated 3D network-like porous MnCo2O4 as a promising electrode material for supercapacitors.  相似文献   

16.
S-doped carbon nanotubes (SCNTs) obtained by a post treatment approach are used as conductive additive for LiFePO4 (LFP) cathodes in Lithium ion batteries (LIBs). The SCNTs exhibit higher specific surface area, higher conductivity and better hydrophily as compared to the pristine CNTs because of S doping. Thus the SCNTs can be stably dispersed in water, forming an aqueous conductive slurry. The LFP cathode using the aqueous SCNTs slurry as conductive additive exhibits excellent electrochemical performances in terms of capacity (143 mA h g−1 at 2 C), rate capability and cycling stability (99.6% of initial capacity after 200 cycles) due to the uniform dispersibility of SCNTs in the bulk of electrodes forming a continuous conductive network. The full cell configuration with graphite as anode, affords a high reversible capability (150 mA h g−1 at 0.2 C), good cycling stability (capacity retention of 87.6% at 2 C), ultrahigh energy density of 163.7 W h kg−1 and power density of 296.8 W kg−1. Our results provide an easy approach to prepare high performance LIB cathodes using water as solvent, thus leading to lower cost and more secure for the electrode production.  相似文献   

17.
《Ceramics International》2016,42(13):14963-14969
Nanostructured spinel NiMn2O4 arrays have been fabricated by a facile hydrothermal approach and further investigated as binder-free electrode for high-performance supercapacitors. Compared with Mn3O4, NiMn2O4 exhibited higher specific capacitances (662.5 F g−1 and 370.5 F g−1 in different electrolytes at the current density of 1 A g−1) and excellent cycling stability (~96% capacitance retention after 1000 cycles) in a three-electrode system. Such a novel microstructure grown directly on the conductive substrate provided sufficient active sites for redox reaction resulting in their enhanced electrochemical behaviors. Their improved performances suggested that ultrathin sheet-like NiMn2O4 arrays on Ni foam substrate were a promising electrode material for supercapacitors.  相似文献   

18.
《Ceramics International》2017,43(3):2956-2961
Ternary metal oxides have great potential for chemical storage devices because of their outstanding synergistic effects as well as rich redox reactions. However, there are limited reports of 3D structure BiCoO3 materials and relevant electrochemical properties. Meanwhile, the study of BiCoO3 is reasonably important for underlying metal oxides researches. In this work, we have successfully developed a 3D urchin-like BiCoO3 material without using any template and surfactant. For the supercapacitor application, the BiCoO3 material showed a specific capacitance of 152 F g−1 at the current density of 1 A g −1, and this value exhibited a rate capability of 82.3% at a high current density of 10 A g −1. Furthermore, the sample showed the ideal cycling stability (92.7% retention after 5000 times cycles at the current density of 1 A g −1 and nearly invariable specific capacitance during different current density cycles). These results suggest that the obtained urchin-like BiCoO3 sample has superb electrochemical performances which suggest its promising applications as renewable and clean energy storage devices electrode materials in the future.  相似文献   

19.
A series of nitrogen-doped porous carbons are prepared through KOH activation of a nonporous nitrogen-enriched carbon which is synthesized by pyrolysis of the polymerized ethylenediamine and carbon tetrachloride. The porosity and nitrogen content of the nitrogen-doped porous carbons depend strongly on the weight ratio of KOH/carbon. As the weight ratio of KOH/carbon increases from 0.5 to 2, the specific surface area increases from 521 to 1913 m2 g−1, while the nitrogen content decreases from 10.8 to 1.1 wt.%. The nitrogen-doped porous carbon prepared with a moderate KOH/carbon weight ratio of 1, which possesses a balanced specific surface area (1463 m2 g−1) and nitrogen content (3.3 wt.%), exhibits the largest specific capacitance of 363 F g−1 at a current density of 0.1 A g−1 in 1 M H2SO4 aqueous electrolyte, attributed to the co-contribution of double-layer capacitance and pseudocapacitance. Moreover, it shows excellent rate capability (182 F g−1 remained at 20 A g−1) and good cycling stability (97% capacitance retention over 5000 cycles), making it a promising electrode material for supercapacitors.  相似文献   

20.
We present a facile yet effective two-step activation method to prepare a hierarchically porous carbon with natural shiitake mushroom as the starting materials. The first step involves the activation of shiitake mushroom with H3PO4, while the second step is to further activate the product with KOH. The resulting carbon is comprised of abundant micro-, mesopores and interconnected macropores that has a specific surface area up to 2988 m2 g−1 and pore volume of 1.76 cm3 g−1. With the unique porous nature, the carbon exhibited a specific capacitance of 306 and 149 F g−1 in aqueous and organic electrolyte, respectively. Moreover, this carbon also shows a high capacitance retention of 77% at large current density of 30 A g−1 and exhibited an outstanding cycling stability with 95.7% capacitance preservation after 15,000 cycles in 6 M KOH electrolyte. The far superior performance as compared with those of the commercially most used activated carbon RP20 in both aqueous and non-aqueous electrolyte demonstrates its great potential as high-performance supercapacitor electrode. The two-step method developed herein also represents a very attractive approach for scalable production of various functional carbon materials using diverse biomasses as starting materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号