首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
《Ceramics International》2016,42(10):11700-11708
Hexagonal wurtzite (HWZ) ZnS nanorods were formed in specimens with a S/Zn ratio of 1.3, synthesized at temperatures ≥200 °C in a solution containing 80 vol% water and 20 vol% of ethylenediamine (EN). In contrast, HWZ ZnS nanoparticles were formed in specimens synthesized at temperatures lower than 200 °C. Also, cubic zinc blende (CZB) ZnS nanoparticles were formed in specimen synthesized in water. The absorption peak for the HWZ nanorods and CZB ZnS nanoparticles was at wavelength of 325 nm and 339 nm, respectively, indicating that the band gap energy of the former is larger than that of the latter. Moreover, the HWZ ZnS exhibited two emission peaks at 474 nm and 580 nm. The peak at 474 nm is attributed to Zn vacancies but the origin of the peak at 580 nm remains undetermined. Since the intensity of the emission peak at 580 nm was significantly higher for the HWZ nanoparticles than for nanorods, this peak might be associated with defects in the HWZ ZnS nanoparticles.  相似文献   

2.
Polyaniline/zinc composites and nanocomposites were prepared using solution mixing method. Zinc (Zn) particles with an average particle size of 60 μm and zinc nanoparticles with an average particle size of 35 nm were used as fillers in polyaniline (PANI) matrix. Films and coatings of PANI/Zn composites and nanocomposites were prepared by the solution casting method. Electrical conductivity and anticorrosion properties of PANI/Zn composite and nanocomposite films and coatings with different zinc loadings were evaluated. According to the results, electrical conductivity and anticorrosion performances of both PANI/Zn composites and nanocomposites were increased by increasing the zinc loading. Also results showed that the PANI/Zn nanocomposite films and coatings have better electrical conductivity and corrosion protection effect on iron coupons compared to that of PANI/Zn composite.  相似文献   

3.
In present study, selective extraction of cadmium from acidic leach solutions, containing various heavy metal ions, by emulsion liquid membrane (ELM) is studied. For this reason, the zinc plant copper cake was leached with sulfuric acid and main acidic leach solution containing Zn(II), Cu(II), Fe(II), Cd(II), Co(II) and Ni(II) ions was obtained. After Zn(II), Cu(II), Fe(II) and Cd(II) ions in the acidic leach solution were separated, the important parameters influencing the extent of cadmium extraction were investigated and optimum conditions were determined. Cadmium extraction was influenced by number of parameters like initial metal ion concentration, mixing speed, phase ratio, extractant concentration, surfactant concentration, the stripping solution type and concentration, and the feed solution acid concentration. The optimum values of parameter above mentioned were used and cadmium in the acidic leach solution containing 650 mg Cd/L, 365 mg Co/L, 535 mg Ni/L, and 1260 mg Zn/L was almost completely extracted within 10 min. The results showed that it is possible to extract 99% of cadmium after 10 min contact time by using ELM from aqueous solutions, containing Fe(II), Al(III), Cu(II), Zn(II), Pb(II), Co(II) and Ni(II) ions, at the optimum operating conditions.  相似文献   

4.
The effect of microwave sintering conditions on the microstructure, phase composition and mechanical properties of materials based on hydroxyapatite (HAP) and tricalcium phosphate (TCP) was investigated. Fine grained monophase HAP and biphasic HAP/TCP biomaterials were processed starting from stoichiometric and calcium deficient nanosized HAP powders. The HAP samples microwave (MW) sintered for 15 min at 900 °C, with average grain size of 130 nm, showed better densification, higher density and certainly higher hardness and fracture toughness than samples conventionally sintered for 2 h at the same temperature. By comparing MW sintered HAP and HAP/TCP samples, it was concluded that pure HAP ceramics have superior mechanical properties. For monophase MW sintered HAP samples, the decrease in the grain size from 1.59 μm to 130 nm led to an increase in the fracture toughness from 0.85 MPa m1/2 to 1.3 MPa m1/2.  相似文献   

5.
In the present study newly developed potentiometric sensors for determination of zinc(II) are presented. The proposed potentiometric method was based on the fabrication of modified carbon paste (MCPE; electrode X) and modified gold nanoparticles-carbon paste (GNPs-CPE; electrode IX) sensors. A mercapto compound of 1,4-bis(5-mercaptopentyloxy)-benzene (BMPB) alone or self-assembled on gold nanoparticles was used as modifier to construct electrode (X) and electrode (IX) sensors, respectively. The prepared electrodes exhibit Nernstian slope of 29.93 ± 0.4 and 26.0 ± 1.02 mV decade−1 towards Zn(II) ion over a wide concentration range of 6.8 × 10−10 to 2.9 × 10−2 and 1.0 × 10−7 to 1.0 × 10−2 mol L−1 for electrode (IX) and electrode (X) sensors, respectively. The limit of detection of the electrode (IX) and electrode (X) sensors was found to be 6.8 × 10−10 and 1.0 × 10−7 mol L−1, respectively. The potentiometric response of the electrode (IX) and electrode (X) based on GNPs-BMPB and BMPB are independent of pH of test solution in the pH range of 2.5–8.1 and 3–7 with a response time of 6 and 8 s for electrode (IX) and electrode (X) sensors, respectively. The proposed sensors showed fairly good discriminating ability towards Zn(II) ion in comparison with many hard and soft metal ions. Finally, the proposed electrodes were successfully used as indicator electrodes in potentiometric titration of zinc ion with sodium tetraphenylborate (NaTPB) and in direct determination of Zn(II) ion in some water samples. The results obtained compared well with those obtained using atomic absorption spectrometry.  相似文献   

6.
The preparation of palladium nanoparticles on the surface of a polymer inclusion membrane (PIM) consisting of 30 wt% di-(2-ethylhexyl)phosphoric acid and 70 wt% poly(vinyl chloride) is described. The Pd(II) ion was firstly extracted into the membrane via cation-exchange and then subsequently reduced to form clusters of palladium nanoparticles on the membrane surface. The reducing agents investigated were NaBH4, trisodium citrate, sodium formate, and l-ascorbic acid. Best results were obtained with l-ascorbic acid which at pH 2.0 formed a uniform layer of palladium nanoparticle clusters on the surface of the PIM with an average nanoparticle size of 38 nm.Factors such as pH, temperature and intensity of mixing of the l-ascorbic acid solution, reduction time and Pd(II) loading of the PIM were found to have a significant influence on the surface coverage and size of the palladium nanoparticles.  相似文献   

7.
Pt nanoparticles have been embedded into layers of a titanium picolinate framework by a photodeposition method. TEM images show the embedded and adsorbed Pt nanoparticles in the space between the layers with size of c.a 1 nm. The obtained Pt loaded titanium picolinate framework functions as an efficient photocatalyst for hydrogen evolution from methanol/water solution upon irradiation at wavelength longer than 300 nm (159.3 μmol h 1/0.1 g TiPF catalyst).  相似文献   

8.
We report new photoluminescent carbon nanoparticles having an average particle size of 50 nm. When dispersed in chloroform and excited with 325 nm wavelength, the solution showed strong photoluminescence at 475 nm with 12–13% quantum yield. A well dispersed photoluminescent solution can also be prepared with ethanol, xylene or hexane using the nanoparticles. The nanoparticles were prepared by a simple confined combustion of an aromatic compound such as benzene, toluene, xylene or a mixture thereof in air.  相似文献   

9.
《Ceramics International》2016,42(6):6664-6672
Undoped and Zn-doped CuCrO2 nanoparticles were synthesized by sol–gel method as promising wide band gap p-type semiconductor materials for solid-state dye-sensitized solar cells (DSSCs). We studied the influence of Zn dopant concentration on structural, electrical and optical properties of CuCrO2 nanoparticles. The X-ray diffraction data indicated that the delafossite-to-spinel ferrite phase transition occurs by increasing the amount of Zn doping. The average nanoparticle size was determined about 40 nm. A minimum value of electrical resistivity of 5.7 Ω cm was obtained for doping concentration of 5%. Having optimized the Zn-doped CuCrO2 nanoparticles, solid-state DSSCs were fabricated using undoped and Zn-doped CuCrO2 (5%) as solid electrolytes. As the photoanode layer, the vertically aligned TiO2 nanorod arrays were grown on FTO glass using a hydrothermal method. Compared with undoped CuCrO2, the Zn-doped nanoparticles exhibited an improvement in photovoltaic properties. The overall efficiency enhancement of 39% was obtained for the dopant concentration of 5%. The improved power conversion efficiency is attributed to the lowered electrical resistivity and enlarged work function of Zn-doped CuCrO2 nanoparticles.  相似文献   

10.
《Ceramics International》2017,43(7):5412-5416
A novel hard-template synthesis approach for the fabrication of mesoporous hydroxyapatite (HAP) is described herein. Carbon nanorods, synthesised using mesoporous silica (SBA-15) and an acidified sucrose solution, are used as a hard template, after which, they are utilised to synthesise mesoporous HAP. Transmission electron microscopy (TEM), X-ray diffraction (XRD) energy-dispersive X-ray spectroscopy (EDX) and nitrogen adsorption/Brunauer–Emmett–Teller (BET), are all employed to characterise the synthesised materials. We demonstrate that this approach allows for the successful fabrication of single phase HAP with surface area 242.20±2.27 m2 g−1 and average pore diameter 3.5 nm and 18.9 nm. This work proposes for the first time a bespoke innovative procedure that employs carbon nanorods as a template for the synthesis of mesoporous HAP via a hard templating protocol.  相似文献   

11.
《Ceramics International》2015,41(8):9301-9313
Cobalt oxide (Co3O4) nanoparticles were prepared by simple, facile and cost effective sol–gel route. Triethanol amine (TEA) was used as surfactant to reduce the size of the particles. The XRD patterns reveal that the crystallite size of the sample prepared without surfactant yields 69 nm and with different surfactant concentrations (5 ml, 10 ml, and 15 ml), the estimated crystallite sizes were reduced to 64 nm, 52 nm, and 32 nm respectively. The morphological and elemental composition of the samples was investigated by SEM and EDS. The optical studies revealed the possible electronic transitions which are responsible for an occurrence of two energy band gap in cobalt oxide. The photoluminescence probe for the presence of defects and the results obtained specified that the defects get reduced with the addition of surfactant TEA. Photocatalytic degradation of dyes (Rhodamine B and Direct Red 80) was investigated under visible light using cobalt oxide nanoparticles as catalyst. The effect of catalyst amount and pH of the dye solution was analyzed with the help of UV–visible absorption spectra.  相似文献   

12.
《Ceramics International》2017,43(2):1710-1715
Zinc oxide (ZnO), a wide band-gap semiconductor, has received a great interest due to its potential applications in various fields both as nanostructures and as sintered compacts. In this study, we report on the synthesis of the ZnO nanostructures and facilitation of their sintering for the production of fine-grained dense compacts. The facile synthesis of gram scale ZnO nanostructures was achieved by thermal decomposition of zinc acetate dihydrate (Zn(Ac)2·2H2O) or Zn(Ac)2·2H2O/graphite mixtures at 300 °C for 12 h. Thermal decomposition of Zn(Ac)2 resulted in the formation of mostly ZnO nanoparticles with wurtzite structure along with ZnO nanorods, while the addition of graphite significantly promoted the growth of ZnO nanowires. Microstructural and phase properties of the obtained ZnO nanostructures were determined by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high resolution TEM (HRTEM) techniques, all of which revealed the successful synthesis of high quality ZnO nanostructures. In addition to synthesis and characterization of the ZnO nanostructures, we report on the enhancement of their sinterability by a subsequent cryogenic milling for a short duration of 5 min. As a result of the applied cryo-milling, fabrication of highly dense (96.2%) sintered compacts with fine grain sizes (572 nm) could be achieved after pressureless sintering at 1000 °C for 2 h.  相似文献   

13.
《Catalysis communications》2011,13(15):1428-1431
Metallic ruthenium nanoparticles intercalated in hectorite (particle size ~ 4 nm) were found to catalyse the hydrogenation of furfuryl acohol to give tetrahydrofurfuryl alcohol in methanolic solution under mild conditions. The best results were obtained at 40 °C under a hydrogen pressure of 20 bar (conversion 100%, selectivity > 99%). After a total turnover number of 1423, the hectorite supported ruthenium nanoparticles are deactivated but can be recycled and regenerated.  相似文献   

14.
Co–Zn substituted nanoferrites having stoichiometric composition Co1?xZnxY0.15Fe1.85O4 (x = 0.0–1.0, step: 0.2) were synthesized by chemical co-precipitation method. Analysis of the XRD patterns confirms the formation of cubic spinel phase as main phase along with few traces of secondary phase. The lattice constant was found to increase from 8.378 Å to 8.438 Å with zinc contents which can be explained on the basis of difference in ionic radii. SEM micrographs indicate nearly uniform distribution of grains. The average crystal size was found to decrease from 38.41 nm to 14.25 nm with the increase of Zn contents. The physical density increases with the increase of Zn contents from 3.95 g/cm3 to 4.42 g/cm3. It was found that the resistivity decreases with the increase of Zn contents from 9.20 × 107 Ω cm to 5.26 × 106 Ω cm which may be attributed to the increase in the number of Fe2+/Fe3+ ions pairs at B-sites. The transition temperature of the samples with substitution level x = 0.6, 0.8, 1.0 changes at 373, 333 and 313 K, respectively. The transition temperature of the sample with x = 1.0 is close to the room temperature. This may be the Curie temperature. Low Curie temperature material can be used for the preparation of temperature sensitive ferrofluid. Dielectric loss tangent (tan δ) has been observed to increase with the increase of zinc contents. This can be attributed to the decrease in resistivity which in turn increases the dielectric loss tangent.  相似文献   

15.
《Ceramics International》2017,43(7):5403-5411
Uniform interconnected micro/nanoporous ceramics with good mechanical properties hold universal applications in biomedical and engineering fields. Herein, using hydroxyapatite (HAP) microtubes as the raw material instead of traditional particles, a novel interconnected nanochannel hydroxyapatite ceramic was fabricated successfully through one-step microwave sintering method without the addition of pore generators. The tubular structure of the HAP microtubes remains even after microwave sintering, which endows the ceramic with uniform interconnected nanochannels and 3-D porous structure. The HAP microtube nanochannel ceramic has a narrow pore size distribution from 400 nm to 600 nm, and exhibits well permeability, high adsorption/desorption ability. The porosity is about 30%, the HAP microtube nanochannel ceramic can be totally dyed by methylene blue within several minutes, and the blue dye can be desorbed completely in 45 min by ultrasonic vibration. In addition, due to the one-dimensional structure of the HAP microtubes, the HAP microtube nanochannel ceramic has smaller shrinkage, bigger porosity, and better toughness than the control sample fabricated by nanoparticles. Base on the uniform interconnected nanochannel structure, well permeability, high adsorption/desorption ability, the HAP microtube nanochannel ceramic fabricated here may be a promising candidate for many applications in biomedical engineering, environmental engineering, and energy engineering.  相似文献   

16.
A citrate solution combustion process was adopted to synthesize Ba2Ti9O20 phase. The precursor powders with small particle size of ∼100 nm and homogeneous distribution of multiphasic particles could be obtained by combustion of a citrate complex solution. The molar ratio of nitrate to citrate in the initial complex solutions had an obvious effect on the phase compositions and organic residuals of the precursor powders. However, those precursor powders all could be easily sintered into single phase Ba2Ti9O20 ceramics at 1250 °C for 4 h. The densities and dielectric constants of the ceramics depended on the molar ratio of nitrate to citrate in the initial complex solutions used for forming the precursor powders. The relations between the preparation conditions and properties were discussed.  相似文献   

17.
The synthesis of zinc oxide (ZnO) nanocrystalline powders for cosmetic applications by a coprecipitation process has been investigated. When the Zn(OH)2 precipitates are calcined at 373 K for 10 min, the crystalline phases comprise the major phase of Zn(OH)2 and the minor phase of ZnO. XRD pattern shows that only ZnO is present and no other phase is detected when the Zn(OH)2 precipitates calcined at 413 K for 10 min. The nanocrystallite size of ZnO increases slightly from 32.3 to 44.3 nm when the calcination temperature increases from 413 to 873 K. The activation energy of ZnO nanocrystallite growth is 2.02 kJ/mol, which reveals that the nanocrystalline ZnO is easily grown at low temperature. The UV transmission of ZnO nanocrystallites in the wavelength range from 290 to 375 nm is about 35%, indicating that the ZnO nanocrystallites have an excellent UV-absorbing capability.  相似文献   

18.
Ultrathin PZT film was prepared using a chemical solution deposition method from polymeric citrate precursors. The PZT solution was spin-coated on an amorphous silica layer formed on a Si(1 0 0) substrate. The films were thermally treated from the substrate side with a low heating rate (1°/min) up to 700 °C and finally annealed for 10 h. Ultrathin PZT films without microstructural instability were prepared in spite of high temperature and long annealing time. AFM and HRTEM investigations revealed the formation of a well-developed dense microstructure consisting of spherical crystallites (4–7 nm). Low roughness (2.2 nm) of a ~26 nm thick layer was obtained for a two-layered PZT film. The grazing incidence X-ray diffraction (GIXRD) measurements confirmed the polycrystalline structure of ultrathin PZT films. Also, GIXRD and electron energy dispersive X-ray (EDS) analysis showed that compositional variations were smaller than expected, in spite of the long annealing time.  相似文献   

19.
Silica nanoparticles have been synthesized from silica fume using alkali dissolution–precipitation process. The dissolution efficiency of 99% at a temperature of 80 °C and a time of 20 min was achieved. Sodium silicate solution was obtained by dissolving the fume with NaOH solution. Then, silica nanoparticles were precipitated using sulfuric acid. Silica nanoparticles (175 nm) were achieved using 12% sulfuric acid at pH 7 and 200 ppm sodium dodecyl sulfate (SDS). The silica morphologies appeared as a spherical shape with narrow particle size distribution. The silica samples were used for the formulation and testing of chemical mechanical polishing (CMP) slurries. The morphology of the polished wafer surface and its roughness were examined by atomic force microscope (AFM).The results indicated that the surface roughness was greatly improved after application of CMP. It was found that the surface roughness of the polished wafer is 0.226 nm at an applied pressure of 7 psi. The removal rate was found to be 1200 Å. These values confirm the quality of polished wafers.  相似文献   

20.
A novel clay mineral-based adsorbent for Ag(I) ions extraction was obtained by modifying hectorite with 2-(3-(2-aminoethylthio)propylthio)ethanamine (AEPE-hectorite). The modified hectorite was used to recover Ag(I) ions from wastewater for further preparation of silver nanoparticles supported hectorite. The parameters affecting silver ions extraction by AEPE-hectorite were investigated. The adsorbent could extract Ag(I) ions from solution in a wide pH range (1–8) and high extraction efficiencies were achieved in the solution pH ranged from 4 to 9. AEPE-hectorite showed a good selectivity toward Ag(I) ions over Co(II), Ni(II) and Cd(II) ions and the solution ionic strength had no significant effect on extraction efficiency. The adsorption of Ag(I) ions onto AEPE-hectorite followed the Freundlich isotherm model with maximum adsorption capacity observed in the experiment of 49.5 mg g 1. The adsorbent was successfully used to recover silver ions from a wastewater containing high concentration of silver and silver nanoparticles supported hectorite was obtained after reducing with NaBH4. These results show an alternative in the preparation of silver nanoparticles supported clay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号