首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
《Ceramics International》2022,48(22):33028-33040
The propagation of vertical crack on the surface of thermal barrier coatings (TBCs) may affect the interface cracking and local spallation. This research aims to establish a TBC model incorporating multiple cracks to comprehensively understand the effects of vertical crack distribution on the coating failure. The continuous TGO growth and ceramic sintering are together introduced in this model. The influence of the vertical crack spacing and non-uniform distribution on the stress state, crack driving force, and dynamic propagation is examined. Moreover, the influence of coating thickness on the crack growth driving is also explored. The results show that large spacing will lead to early crack propagation. The uniform distribution of vertical cracks can delay the spallation. When the spacing is less than 4 times ceramic coat thickness, the cracking driving force will come in a steady-state stage with the increase of vertical crack length. Prefabrication of vertical cracks with spacing less than 0.72 mm on the coating surface can greatly decrease the strain energy. The results in this study will contribute to the construction of an advanced TBC system with long lifetime.  相似文献   

2.
Development of microporous magnesia based aggregates serving as working-line refractories have great significance in reducing energy loss and saving resource. Microporous magnesia-based aggregates were fabricated at 1780 °C by in-situ decomposition of magnesite with addition of nano-sized Al2O3. Intergranular MgAl2O4 phases formed in situ decreased the closed-pore size, thermal conductivity and improved the ceramic bonding and thermal shock resistance. Furthermore, the results suggested that pore size distribution was the dominate factor affecting thermal conductivity. Thermal contact resistance owing to networks of intergranular spinel in magnesia could improve thermal insulation performance effectively. The mismatch of thermal expansion coefficient between spinel and magnesia and the micro-scale closed pores enhanced thermal shock resistance by accommodating thermal stress and suppressing crack propagation. Microporous magnesia-based aggregates with 3 wt% nano-sized Al2O3 presented a mean pore size of 3.42 μm, thermal conductivity of 5.76 W m?1 k?1 (800 °C), a cold compressive strength of ~285 MPa, and a residual strength retention rate of 65.0% after thermal shock cycles. The low-conductivity microporous magnesia-based aggregates with excellent thermal shock resistance show promise for future application in working-lining lightweight refractories.  相似文献   

3.
《Ceramics International》2020,46(10):16372-16379
To improve the crack propagation resistance of YSZ thermal barrier coatings during the thermal cycle, three kinds of thermal barrier coatings were prepared by atmospheric plasma spraying: YSZ, AlBOw-modified YSZ and BNW-modified YSZ. SEM, EDS and XRD were used to analyse the morphology, composition and phase composition of the sprayed powder and coating section. The phase structures of the YSZ, YSZ+AlBOw and YSZ+BNw coatings were t' phase. The cross-section of the coating presents a layered structure with pores inside. The porosity values of the YSZ, YSZ+AlBOw and YSZ+BNw coatings are 10.33%, 14.17% and 12.52%, respectively. The thermal shock resistance of three groups of coatings after 5 min at 1000 °C was analysed. The failure behaviour of the coatings after several thermal cycles was studied. The results show that the thermal shock resistance of the coatings with AlBOw is slightly lower than that of the YSZ coatings. The thermal shock resistance of the BNw coatings is 62.2% higher than that of the YSZ coatings. The whisker inhibits the crack propagation and prolongs the life of the coatings via crack deflection, whisker pull-out and whisker bridging.  相似文献   

4.
The level of residual stress and crack propagation in a new generation of laminates, based on silicon nitride (Si3N4) layer and a mixture of boron nitride (BN) and alumina (Al2O3) interlayer, was presented. The structure consists of alternated concentric rings of Si3N4 separated by the weak BN interlayer possessing no planes of easy crack propagation and fracture resistance much larger than that of any classical planar laminates. The results on direction of crack propagation and residual stress in relation to inter-layer composition, the number of layers, and their thickness are investigated and reported. The effect of residual stress on crack propagation was studied by using Vicksrs intentation. The highest compressive residual stress of ∼170 MPa was found in samples with five layers possessing an average layer thickness of ∼310 × 10−6 m.  相似文献   

5.
《Ceramics International》2023,49(6):8962-8975
The porous ceramic coating as a "brick" layer sprayed by air plasma spraying(APS) and MK resin as a "mud" layer prepared by a high viscosity spray gun were characterized and tested. Three specifications of the "brick-mud" layered ceramic sealing coating were fabricated through the cyclic and orderly deposition of the "brick" layer and "mud" layer, and the thermal cycling performance and failure mechanism of the three new coatings were studied. The results showed that the agglomerated Y2O3 partially stabilized ZrO2 (YSZ) particles had porous spherical structures and good sprayability, and the content of the YSZ phase in the prepared "brick" layer was 54.2%. The "mud" layer had good phase stability and was amorphous SiO2 at and below 1100 °C. The fracture toughness of the pure YSZ coating was 2.295 ± 0.135 MPa?m0.5, and which of the “mud” layer was reduced by 72.3%. The thermal cycling life of the conventional coating was only 67.3 times, which of A1, A2 and A3 coatings with 2, 3 and 6 "mud" layers were increased by 32.4%, 124.8% and 88.3%, respectively. In the thermal cycling process, the "weak" layer in the "brick-mud" layered coating led to the redistribution of internal stress and reduced the stress concentration in the top coating (TC)/TGO interface. Moreover, the initiation of microcracks in the "weak" layer, along with the "crack branching" effect and the "crack deflection" effect during the crack propagation process, could consume partial internal stress. Thus, the crack growth rates in the TC coating/TGO interface of the A1, A2 and A3coatings were lower than that of the conventional coating due to the above stress release mechanisms. In addition, the thermal cycling lives of the three new coatings with 2, 3 and 6 "mud" layers were improved to different degrees because of different stress effects.  相似文献   

6.
The high-temperature service performance of nearly fully dense 20 wt% BNW/SiO2 ceramic was systematically investigated. The oxidation damage and strength degradation of the whiskers combined with the surface microstructures of the samples predominantly influence the flexural strength from RT to 1000 °C. In previous work, the temperature dependence of the material properties is invariably ignored when evaluating thermal stress crack initiation and propagation behaviour. In this work, modified thermal shock models that include temperature-dependent material properties were established based on thermal-shock fracture (TSF) theory and thermal-shock damage (TSD) theory. Then, the thermal shock resistance (TSR) of the BNW/SiO2 ceramic was evaluated by preforming a water quenching test. The modified models could better explain the TSR behaviour of the ceramic, indicating that considering the temperature-dependent material properties will reveal the thermal shock damage mechanism more precisely.  相似文献   

7.
《Ceramics International》2022,48(6):8143-8154
The local spalling induced by the propagation and coalescence of cracks in the ceramic layer is the fundamental reason for the thermal barrier coatings (TBCs) failure. To clarify the effects of horizontal and vertical cracks on the coating failure, an integrated model combining dynamic TGO growth and ceramic sintering is developed. The effects of cracks on the normal and shear stress characteristics are analyzed. The driving force and propagation ability of cracks under different configurations are evaluated. The interaction between horizontal and vertical cracks is explored by analyzing the variation of the crack driving force. The results show that TGO growth causes the ratcheting increase of σ22 tensile stress above the valley, and the σ12 shear stress is on both sides of the peak. Ceramic sintering mainly contributes to the ratcheting increase of σ11 tensile stress. There is minimum strain energy when the horizontal crack extends to the peak. The vertical cracks on the surface of the ceramic layer are easier to propagate through the coating than that of other locations. When the horizontal and vertical cracks simultaneously appear near the valley, they can promote the propagation of each other. The present results can offer theoretical support for the design of an advanced TBC system in the future.  相似文献   

8.
To elucidate degradation mechanisms attributable to high-temperature fatigue crack propagation, a study was conducted of 3-D woven SiCf/SiC CMC in which amorphous SiC fiber was used as a reinforcement material and in which a matrix was formed through low-temperature melt infiltration. From a high-temperature fatigue test conducted at 1373 K in the atmosphere with stress of 142 MPa or more, the fracture lifetime of newly developed SiCf/SiC CMC was found to be longer than that of SiCf/SiC CMC, which uses crystalline SiC fiber. Furthermore, repeatedly applying high temperatures during high-temperature fatigue tests and using X-ray computed tomography, fatigue cracks were found to propagate in a direction across 0-degree fiber bundles that undergo stress. Electron mapping of regions with crack propagation revealed that oxidation eliminates boron nitride (BN), which has a crack deflection effect. The SiC fibers and matrix are fixed through the formation of oxides. Cracks propagate because of the consequent decrease in toughness of the SiCf/SiC CMC. In regions without crack propagation, fracture surfaces were not covered with oxides. These regions underwent forcible fracture in the final stage of the high-temperature fatigue tests. From the test results presented above, SiCf/SiC CMC is considered to undergo fracture when the effective cross-sectional area is reduced because of crack propagation accompanying oxidation and when the test load exceeds the tensile strength of the residual cross-sectional area. However, some cracks in the matrix produced by a low-temperature melt infiltration process were closed by oxides derived from YSi2. Because of crack closing, crack propagation is presumed to be avoided. Also, LMI-CMC showed excellent high-temperature fatigue properties at pressures higher than 150 MPa, which exceeds the proportional limit.  相似文献   

9.
《Ceramics International》2019,45(12):14896-14907
Failure of plasma-sprayed thermal barrier coatings (TBCs) is very complicated upon temperature cycling, therefore, to ascertain the crack propagation behavior is beneficial to understand the failure mechanism and life prediction of TBCs. In this paper, a finite element model is developed by coupling the dynamic growth of thermally grown oxide and dynamic crack propagation to explore the failure of TBCs induced by the instability of the interface between top coat (TC) and bond coat (BC). The thermal cyclic lifetime is deduced by obtaining the thermal cycles corresponding to the occurrence of complete delamination. The influence of the non-uniformity of the interface on thermal cyclic lifetime is quantitatively evaluated. Sensitivity studies including the effects of constituent properties and crack distance to the interface on the thermal cyclic lifetime are further examined. The results show that the incipient cracks usually nucleate above the valley due to the large tensile stress, and the shear stress near the peak plays a very crucial role. The crack growth involves three stages with different fracture dominated-mode. The crack propagation behavior obtained by simulation is in line with that observed by experiments. The TBCs system with a uniform interface exhibits a longer thermal cyclic lifetime compared to the non-uniform interface. Coating optimization methods proposed in this work may provide an alternative option for developing a TBCs system with longer service lifetime.  相似文献   

10.
《Ceramics International》2021,47(21):29900-29907
h-BN is an ideal substitution candidate for graphite due to its similar crystal structure, better oxidation resistance. In this work, the effect of h-BN on microstructure and comprehensive properties of Al2O3-C refractories are investigated, and the specimen containing 0.5 wt% h-BN (G0.5N0.5) possesses the best comprehensive properties. The addition of h-BN could reduce the diameter of SiC whiskers, which leads to the highest strength of specimen G0.5N0.5 (42.63 ± 3.10 MPa). Moreover, the fracture behavior of the specimens is demonstrated using wedge splitting test. The results show that the specimen G0.5N0.5 possesses the highest crack initiation and propagation resistance, which could be attributed to the collaborative effect of h-BN and SiC whiskers. Noteworthily, the addition h-BN could improve the thermal shock resistance. The specimens containing h-BN possess the higher residual ratio, compared with the specimen containing no h-BN (G1N0), and the specimen G0.5N0.5 shows the highest residual strength (14.12 ± 0.67 MPa). Furthermore, the oxidation resistance could be enhanced with introducing the h-BN.  相似文献   

11.
MgO-MgFe2O4 refractory aggregates with high closed porosity were fabricated using MgO agglomerates and Mg(OH)2 with introducing Fe2O3 additive. The evolutions of pores and microstructure and their relationship with the properties of the specimens were studied. The addition of Fe2O3 obviously promoted the MgO grain growth and conversion of large open pores into small closed pores, attributing to the formation of cationic vacancies and intergranular MgFe2O4 bonding phase. Owing to the presence of closed pores and networks of intergranular MgFe2O4, both thermal insulation and strength were enhanced significantly. Besides, the formed closed pores and MgFe2O4 phase could accommodate thermal stress and induce transgranular fracture and crack deflection, therefore effectively improving the thermal shock resistance. The specimen with 15 wt% Fe2O3 showed a apparent/closed porosity of 0.7%/10.1%, median pore diameter of 4.37 µm, thermal conductivity of 9.3 W/(m·K) (500 °C), flexural strength of 143.5 MPa, and residual flexural strength of 24.1 MPa after thermal shock.  相似文献   

12.
Nondestructive and accurate measurement of residual stress in ceramic coatings is challenging, but it is crucial to the assessment of coatings failure and life. In this study, for the first time, the thermal‐cycle dependent residual stress in an atmosphere plasma sprayed thermal barrier coating system has been nondestructively and accurately measured using photoluminescence piezo‐spectroscopy. Each thermal cycle consists of a 5‐minute heating held at 1150°C and a 3‐minute water quenching. The measurement was performed within a crack‐susceptible zone in the yttria‐stabilized‐zirconia (YSZ) top coat (TC) closely above the thermally grown oxide layer. A YSZ:Eu3+ sublayer was embedded in TC as a stress sensor. It was found that the initial residual stress was compressive, with a mean value of 240 MPa, which rapidly increased to 395 MPa after 5 thermal cycles (12.5% life) and then increased gradually to the peak of 473 MPa after 25 thermal cycles (62.5% life). After 30 thermal cycles (75% life), the mean stress dropped abruptly to 310 MPa and became highly heterogeneous, with gradual reduction toward final spallation. The heterogeneous stress distribution indicates that many microcracks nucleated at different locations and the spallation occurred due to the coalescence of the microcracks.  相似文献   

13.
《Ceramics International》2020,46(2):1532-1544
The failure of plasma-sprayed thermal barrier coating (TBC) is often caused by the coating spallation due to crack propagation. In this study, a new model with stacking lamellae is developed based on the cross-section micrograph to explore crack propagation behavior within the ceramic top coat (TC) during isothermal cycling. The dynamic growth process of thermally grown oxide (TGO) is simulated via material properties change step by step. The stress profiles in the lamellar model are first evaluated, and the pore and lamellar interface crack effects on the stress state are further explored. Then, the successive crack growth, linkage, and ultimate coating spallation process is simulated. The results show that the stress intensity in TC enhances with thermal cycling. Large stress concentration always occurs near the pore and lamellar interface crack, which can result in the incipient crack growth. Moreover, the lamellar interface crack also changes the stress distribution within the TC and at the TC/bond coat interface. The multiple crack propagation upon temperature cycling is explored, and the possible coalescence mechanism is proposed. The lamellar crack steadily propagates at the early stage. The crack length sharply increases before the occurrence of coating spallation. The simulated coat spalling path is in line with the experimental result. Therefore, the new lamellar model developed in this work is beneficial to further reveal coating failure mechanism and predict coating lifetime.  相似文献   

14.
A new testing method was used to test the resistance of silicon nitride to repeated thermal shocks. Specimens with cracks initiated by Vicker's indentor were cyclically heated to 1100 °C and cooled to 500 °C. Temperature and stress progress was computed in two points. One point was located on the surface of the specimen and the other one in a region that is most dangerous for crack growth. The temperature progress of the surface point was verified using a thermocouple. First thermal shock caused the highest temperature peak and amplitude. The temperature stabilised after different number of cycles in the two analyzed points. Stress oscilation had a different character. We defined an increasing, a stabilised and a decreasing stage. Calculated critical stress, needed for unstable crack growth (132.2 MPa) was assigned to the 13th stress peak. During practical experiments, unstable crack growth occured after the 4th cycle (114.9 MPa). The difference between this value and the value of calculated critical stress was 15%.  相似文献   

15.
《Ceramics International》2017,43(3):3089-3100
The residual interfacial stress plays an important role in crack initiating and propagating along the interface, which could result in delamination failure of the thermal barrier coatings (TBCs). In this study, the finite element model of air plasma spraying(APS) TBCs was established to assess the level and distribution of residual stress along top coat(TC)/thermally grown oxide (TGO) and bond coat (BC)/TGO interfaces under thermal cycles. Instead of using vertical stress S22 in global coordinate system, the normal and tangential components in the local system along the interfaces, transformed from stress components S11, S22, and S12 in the global one, were used to evaluate the way the cracks initiate and propagate along the interfaces. Firstly, the effect of the number of thermal cycles on residual stress was investigated. It was found that, for the TBCs model without TGO growth and crack, the impact of the number of thermal cycles on the stress is very insignificant and could be ignored. So the present study only chose to focus on the first thermal cycle. Then the influence of the TGO thickness and the interface amplitude on the normal and tangential residual stresses for both homogeneous and inhomogeneous temperature fields was explored. The results show that the TGO thickness, interface amplitude and temperature field affect the residual stress level and distribution, leading to different fracture mechanisms along TC/TGO and TGO/BC interfaces. Finally, the difference between the vertical stress in the global coordinate system and the normal stress in the local coordinate system was studied. Compared with vertical stress S22, the stress components normal and tangential to the TC/TGO and TGO/BC interfaces are more appropriate to describing the stress distribution along the interfaces and predicting the propensity of crack initiating and propagating along the interfaces.  相似文献   

16.
《Ceramics International》2020,46(8):11835-11845
In this paper, the thermal shock resistance of an auxetic ceramic honeycomb plate is studied based on the fracture mechanics concept for the cases of a central crack or an edge crack. The transient temperature field and transient thermal stress field are obtained for both auxetic and non-auxetic structures. The relationship between the thermal stress intensity factor (TSIF) and the internal cell angle, crack length and time is determined and the critical temperature for the initiation of crack propagation is predicted. Results show that compared with the non-auxetic ceramic honeycombs which are at an internal cell angle of 30°, the critical temperature of the auxetic ceramic honeycombs whose cell are orientated at an angle of −30° increases by 78.5% and the TSIF at the crack tip decreases by 40%, respectively. Hence, the auxetic structures have better thermal shock resistance. This study indicates that auxetic ceramic honeycombs have significant potential applications in harsh temperature environments.  相似文献   

17.
In order to improve the bonding property of joint between SiC modified carbon/carbon (C/C) composites and Li2O–Al2O3–SiO2 (LAS) glass ceramics, SiC nanowires were attempted as the reinforcement materials in the interface region of SiC transition layer and Li2O–MgO–Al2O3–SiO2 (LMAS) gradient joining interlayer. The C/C–LAS joint with SiC nanowire-reinforced interface layer was prepared by a three-step technique of pack cementation, in situ reaction and hot-pressing. The microstructure and thermal shock resistance of the as-prepared joints were examined. The average shear strength of the joined samples with SiC nanowires increased from 24.9 MPa to 31.6 MPa after 40 thermal cycles between 1000 °C and room temperature, while that of the joined samples without SiC nanowires dropped from 21.4 MPa to 8.3 MPa. The increase of thermal shock resistance of the C/C–LAS joints was mainly attributed to the toughening mechanism of SiC nanowires by pullout, bridging and crack deflection.  相似文献   

18.
Comprehensive understanding of failure mechanism of thermal barrier coatings (TBCs) is essential to develop the next generation advanced TBCs with longer lifetime. In this study, a novel numerical model coupling crack propagation and thermally grown oxide (TGO) growth is developed. The residual stresses induced in the top coat (TC) and in the TGO are calculated during thermal cycling. The stresses in the TC are used to calculate strain energy release rates (SERRs) for in-plane cracking above the valley of undulation. The overall dynamic failure process, including successive crack propagation, coalescence and spalling, is examined using extended finite element method (XFEM). The results show that the tensile stress in the TC increases continuously with an increase in an undulation amplitude. The SERRs for TC cracks accumulate with cycling, resulting in the propagation of crack toward the TC/TGO interface. The TGO cracks nucleate at the peak of the TGO/bond coat (BC) interface and propagate toward the flank region of the TC/TGO interface. Both TC cracks and TGO cracks successively propagate and finally linkup leading to coating spallation. The propagation and coalescence behavior of cracks predicted by this model are in accordance with the experiment observations. Therefore, this study proposed coating optimization methods towards advanced TBCs with prolonged thermal cyclic lifetime.  相似文献   

19.
《Ceramics International》2016,42(8):9703-9711
The aim of this work is to study the thermo-mechanical behaviour (bending and compressive tests, creep and thermal shock resistance) of a refractory concrete based on local kaolin grogs and aluminous cement. Strength tests revealed a behaviour that is almost linear elastic for temperatures up to 800 °C and visco-plastic at 900 °C. A crack bridging strengthening process was observed at 800 °C. The creep tests were carried out at different temperatures between 1000 and 1150 °C using stresses in the range (0.75–2.76 MPa). The stress exponent was about 1.255. Microscopic observations suggested an intergranular creep mechanism.A water quenching test was used for estimating the thermal shock resistance of the material. The tested samples supported 80 cycles of standardized cyclic thermal shock without failure. Ultrasonic measurements were applied in order to evaluate the of ultrasonic velocity changes after these thermal shock tests. Strength degradation of the samples was evaluated using two models based on ultrasonic velocity changes during test and compared with the experimental values.  相似文献   

20.
《Ceramics International》2023,49(20):32440-32447
The crack of ceramic weld is a worldwide problem for brittle material, high energy laser beam is expected to solve this problem. In this paper, the crack of fiber laser welding of Al2O3 ceramics was studied. The weld crack rate was used to characterize the crack condition of weld, and the influences of laser power, welding speed and defocusing distance on crack characteristics were carried out. The results showed that Al2O3 ceramics weld has obvious crack tendency, and the cracks mainly appeared on the weld center line. When the crack appeared on the weld center line, there was crack-free on the base metal. When the defocusing distance increased from +3 mm to +20 mm, the number of cracks gradually decreased. When the defocusing distance was greater than +17 mm, cracks-free appeared on the weld and base metal. Abaqus software was used to simulate the relationship between crack and stress based on thermal elastoplastic theory. The high crack areas, few crack areas and free crack areas were divided according to the maximum principal stress value. No matter what welding conditions, as long as the maximum principal stress was less than 1576 MPa, there was crack-free on the weld and base metal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号