首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pure and Mn/Y codoped Ba0.67Sr0.33TiO3 (BST) ceramics were fabricated via the citrate–nitrate combustion technique, and the microstructure and electrical properties of BST ceramics were mainly investigated. The Mn/Y codoping concentration has a strong influence on the microstructure and electrical properties of BST ceramics. All BST ceramics possess a pure polycrystalline structure. The density, dielectric loss, leakage current, and ferroelectric properties are improved by codoping 0.5 mol% Mn and 1.0 mol% Y to BST. The relative density of 0.5 mol% Mn/1.0 mol% Y-codoped BST (BST0510) ceramics reaches 97.5% of the theoretical value. BST0510 ceramics have the lowest dielectric loss (tanδ < 0.0073 at 1 kHz) among all BST ceramics. BST0510 ceramics also demonstrate a low leakage current density (1.23 × 10?7 A/cm2) at an applied field of 10 kV/cm, and excellent ferroelectric properties with a remanent polarization of 2Pr = 15.327 μC/cm2 and a coercive field of 2Ec = 3.456 kV/cm. Therefore, the Mn and Y with optimum content help improve the electrical properties of BST materials.  相似文献   

2.
《Ceramics International》2016,42(13):14849-14854
Bismuth layer-structured ferroelectric (BLSFs) ceramics of Sr1−xEux Bi2Nb2O9 (SBT-xEu, x=0.000, 0.002, 0.004, 0.006) were prepared by a conventional solid-state reaction method. All the samples have a bismuth oxide layered structure with a dense microstructure. The ferroelectric, piezoelectric, dielectric and optical properties of the ceramics were investigated. After Eu3+ doping, samples show a bright red photoluminescence upon blue light excitation of the 400–500 nm. Upon the excitation of 465 nm light, the materials have two intense emission bands peaking around 593 nm (yellow) and 616 nm (red). Meanwhile, good electrical properties with large piezoelectric constant d33 of 14 pC/N and large remnant polarization 2Pr of 11.97 μC/cm2 are obtained at x=0.006. Moreover, this material has a high Curie temperature (Tc=429 °C) and high resistivity, which makes the material resistant to thermal depolarization up to its Curie temperature. This feature indicates that the SBN-xEu ceramics have a latent use in high temperature applications.  相似文献   

3.
Lead lanthanum zirconate titanate ceramics (PLZT) are well known for their excellent dielectric, piezoelectric and ferroelectric properties. In this study, PLZT 9/70/30, 9/65/35 and 9/60/40 ceramics were prepared by vibro-milling mixed-oxide method. All compositions of powders were uniaxial pressed in pellets and sintered at the temperatures of 1200–1275 °C with various soaking times of 2, 4 and 6 h. The X-ray diffraction (XRD) patterns confirmed that all the PLZT samples had perovskite structure with ZrO2 as a second phase and PLZT/ZrO2 composite structure was formed. Dielectric behavior at the frequency of 1 kHz showed broad peak indicating relaxor ferroelectric behavior and the difference of the temperature at maximum dielectric at different frequencies increased when Zr:Ti ratio increased. Polarization with electric field (P-E loop) at room temperature showed that when Zr:Ti ratio increased, the coercive field decreased resulting from crystal structure change from tetragonal to rhombohedral. Induced strain with electric field depended on microstructure where the value of Smax/Emax tended to decrease with increasing grain size. It can be concluded that dielectric and ferroelectric behavior predominantly depended on composition of PLZT ceramics and induced strain behavior predominantly depended on grain size of PLZT ceramics.  相似文献   

4.
Densification behavior, mechanical and thermal properties of ZrC1 ? x ceramics with various C/Zr ratios of 0.6–1.0 have been investigated by two-step reactive hot pressing of ZrC and ZrH2 powders at 30 MPa and 1500–2100 °C. The two-step reactive hot pressed ZrC1 ? x ceramic has a higher relative density (> 95.3%) than that (91.9%) of stoichiometric ZrC sintered at 2100 °C. A cubic Zr2C-type ordered phase forms in the ZrC1 ? x sample obtained at a ZrC/ZrH2 molar ratio of 0.6 at a relatively low temperature of 1100 °C. The decrease in C/Zr ratio is beneficial to densification of ZrC1 ? x ceramic, however, excess grain growth occurs after sintering above densification temperature. The elastic modulus and Vickers hardness decrease with decreasing the C/Zr ratio. With decreasing the C/Zr ratio, both thermal conductivity and specific heat decrease due to the enhanced scattering of conducting phonons and electrons by carbon vacancies.  相似文献   

5.
《Ceramics International》2017,43(6):4904-4909
Zr substituted Bi0.9Dy0.1Fe1−xZrxO3 (x=0.03, 0.06 and 0.10) multiferroic ceramics were synthesized by rapid liquid phase sintering technique to improve its multiferroic properties. Rietveld structural refinement of XRD patterns and Raman spectra revealed a partial structural phase transition from rhombohedral (R3c) to biphasic structure (R3c+P4mm) on codoping. The substitution of larger ionic radii and higher valence Zr4+ ions at Fe-site leads to decrease in the grain size as a result of charge compensation at Fe site. The weak ferromagnetic behavior were observed in all samples along with maximum Mr value of 0.159 emu/g for x=0.03 concentration, which is also endorsed by second order Raman modes. The distortion in FeO6 octahedra due to Zr substitution leads to splitting of electronic bands of 3.2 eV into multiplets, which in turn reduced the optical band gap value in the range of 2.06–2.10 eV for all samples.  相似文献   

6.
《Ceramics International》2016,42(12):13812-13818
Terbium doped yttrium aluminum garnet (Tb:YAG) transparent ceramics with different doping concentrations were fabricated by the solid-state reaction method using commercial Y2O3, α-Al2O3 and Tb4O7 powders as raw materials. Samples sintered at 1750 °C for 20 h were utilized to observe the optical transmittance, microstructure and fluorescence characteristics. It is found that all the Tb: YAG ceramics with different doping concentrations exhibit homogeneous structures with grain size distributions around 22–29 µm. For the 5 at% Tb:YAG transparent ceramics, the grain boundaries are clean with no secondary phases. The photoluminescence spectra show that Tb:YAG ceramics emit predominantly at 544 nm originated from the energy levels transition of 5D47F5 of Tb3+ ions, and the intensity of the emission peak reaches a maximum value when the Tb3+ concentration is 5 at%. The in-line transmittance of the 5 at% Tb:YAG ceramics is 73.4% at the wavelength of 544 nm, which needs to be further enhanced by optimizing the fabrication process. We think that Tb:YAG transparent ceramics may have potential applications in the high-power white LEDs.  相似文献   

7.
This work studied the effect of adding 10 at% Fe, Co or Ni to M-Sn-C mixtures with M = Ti, Zr or Hf on MAX phases synthesis by reactive spark plasma sintering. Adding Fe, Co or Ni assisted the formation of 312 MAX phases, i.e., Ti3SnC2, Zr3SnC2 and Hf3SnC2, while their 211 counterparts Ti2SnC, Zr2SnC and Hf2SnC formed in the undoped M-Sn-C mixtures. The lattice parameters of the newly synthesized Zr3SnC2 and Hf3SnC2 MAX phases were determined by X-ray diffraction. Binary MC carbides were present in all ceramics, whereas the formation of intermetallics was largely determined by the selected additive. The effect of adding Fe, Co or Ni on the MAX phase crystal structure and the microstructure of the produced ceramics was investigated in greater detail for the case of M = Zr. A mechanism is herein proposed for the formation of M3SnC2 MAX phases.  相似文献   

8.
Diphase magnetoelectric composites of CoFe2O4–Pb(ZrTi)O3 were prepared by citrate–nitrate combustion technique by using Pb(Zr,Ti)O3 template powders obtained by the mixed oxide method. Pure diphase powder composites with a good crystallinity were obtained after calcination. The composition and purity were maintained after sintering at temperature of 1100 °C/2 h, which ensured limited reactions at interfaces, while by sintering at 1250 °C/2 h, some small amounts of secondary phases identified as nonstoichiometric ZrO2?x resulted. The method allowed to produce diphase ceramics with homogeneous microstructures and a very good mixing of the two phases. The dielectric and magnetic investigation at room temperature confirmed the formation of composite ceramics with both dielectric and magnetic properties at room temperature, with permittivity and magnetization resulted as sum properties from the parent Pb(Zr,Ti)O3 and ferrite phases.  相似文献   

9.
An electric-field-induced large strain and strong photoluminescence was achieved by introducing trivalent Pr3+ as the activator into 0.92(Bi0.5Na0.5)TiO3  0.08(Ba0.90Ca0.10)(Ti0.92Sn0.08)O3 (BNT−8BCST) ceramics. Around a critical composition of 0.4 mol% Pr3+, a large strain of ∼0.39% with a relatively small hysteresis compared with existing lead-free Bi-perovskite ceramics was obtained. In particular, the strain is very resistant to field cycling and thermal shock, giving the materials attractive for its exceptionally good fatigue resistance and high temperature stability. Besides the excellent electrical properties, Pr3+-modified BNT−8BCST host exhibits a strong photoluminescence with a bright red emission at 610 nm assigned to 1D2  3H4 transitions of the Pr3+ ions upon a blue light excitation of 400–500 nm. The photoluminescence can be enhanced through poling treatment of the samples. Moreover, samples have a superior water resistance property which almost maintaining the same photoluminescence intensity after 40 h water immersion time. These results suggest the material may have potential application as a multifunctional device such as “on-off” actuator and electric field-controlled photoluminescence devices by integrating its excellent luminescence and electrical properties.  相似文献   

10.
The TiO2 ceramics were prepared by a solid-state reaction in the temperature range of 920–1100 °C for 2 h and 5 h using TiO2 nano-particles (Degussa-P25 TiO2) as the starting materials. The sinterability and microwave properties of the TiO2 ceramics as a function of the sintering temperature were studied. It was demonstrated that the rutile phase TiO2 ceramics with good compactness could be readily synthesized from the Degussa-P25 TiO2 powder in the temperature range of 920–1100 °C without the addition of any glasses. Moreover, the TiO2 ceramics sintered at 1100 °C/2 h and 920 °C/5 h demonstrated excellent microwave dielectric properties, such as permittivity (Ɛr) value >100, Q × f  > 23,000 GHz and τf  200 ppm/°C.  相似文献   

11.
《Ceramics International》2015,41(7):8444-8450
Zr–Eu alloy containing 3 at% Eu was prepared by a powder metallurgical method and Eu3+-doped ZrO2 nanotube arrays were prepared by anodising the Zr–Eu alloy. The properties of Eu3+-doped ZrO2 nanotube arrays were studied in contrast to undoped ZrO2 nanotube arrays under different annealing temperatures. Results showed that the Eu3+ ions could not only stabilise the tetragonal phase of zirconium oxide, but also make the crystallite sizes smaller. Annealing temperature exerted a significant influence on the absorbance value, as well as the intensity and position of the photoluminescence peaks. When the excitation wavelength was either 248 nm or 270 nm, the sample annealed at 600 °C displayed the strongest emission peak; while under excitation at 232 nm, the sample annealed at 400 °C exhibited the strongest emission peak.  相似文献   

12.
《Ceramics International》2017,43(10):7522-7530
Low-loss novel Li4Mg3Ti2O9 dielectric ceramics with rock-salt structure were prepared by a conventional solid-state route. The crystalline structure, chemical bond properties, infrared spectroscopy and microwave dielectric properties of the abovementioned system were initially investigated. It could be concluded from this work that the extrinsic factors such as sintering temperatures and grain sizes significantly affected the dielectric properties of Li4Mg3Ti2O9 at lower sintering temperatures, while the intrinsic factors like bond ionicity and lattice energy played a dominant role when the ceramics were densified at 1450 °C. In order to explore the origin of intrinsic characteristics, complex dielectric constants (ε and ε’’) were calculated by the infrared spectra, which indicated that the absorptions of phonon oscillation predominantly effected the polarization of the ceramics. The Li4Mg3Ti2O9 ceramics sintered at 1450 °C exhibited excellent properties of εr=15.97, Q·f=135,800 GHz and τf=−7.06 ppm/°C. In addition, certain amounts of lithium fluoride (LiF) were added to lower the sintering temperatures of matrix. The Li4Mg3Ti2O9−3 wt% LiF ceramics sintered at 900 °C possessed suitable dielectric properties of εr=15.17, Q·f =42,800 GHz and τf=−11.30 ppm/°C, which made such materials promising for low temperature co-fired ceramic applications (LTCC).  相似文献   

13.
A novel preceramic polymer polyzirconocenyborazane (PZCBN) was synthesized by the polymerization of Bis(cyclopentadienyl)zirconium divinyl and borazine, introducing Zr, B, C, N together. The formation and concentration of elements Zr, C, B, N in the precursor and ceramic were detected through FTIR NMR, XRD, SEM and TEM. From the analysis, the Cp2Zr(CH?CH2)2 and borazine linked together via the addition reaction between C?C and B-H. And after pyrolysis at 1200 °C, the precursor turned to ZrC/ZrB2/BN composite ceramics, with a yield of 52 wt%. EDX resulted showed that the elements were well dispersed in the ceramics. According to SEM and TEM, the ceramic had a relatively dense structure with nano crystalline areas of ZrC embedded in the amorphous Zr-C-B-N matrix. TGA in air demonstrated that the ceramic had a favorable property on oxidation resistance.  相似文献   

14.
Oxidation behavior of hot forged textured ZrB2–20 vol% MoSi2 ceramics with platelet ZrB2 grains was investigated at 1500 °C for exposure time from 0.5 to 12 h. Compared to untextured ceramics, the textured ceramics showed obvious anisotropic oxidation behavior and the surface normal to the hot forging pressure demonstrated better oxidation resistance. Such improvement in the oxidation resistance is primarily considered as a higher intrinsic ZrB2 atomic density on the orientated {0 0 l} planes in the textured ceramics. It is expectable that the anisotropic textured ZrB2–MoSi2 ceramics can offer better oxidation resistance when a certain surface with higher oxidation resistance is exposed to air at elevated temperature.  相似文献   

15.
The lead-free Er3+-doped (K0.48Na0.48Li0.04)(Nb0.96Bi0.04)O3 (KNLNB-Er-x) ceramics were fabricated by conventional pressureless sintering. They possess a tetragonal perovskite phase with dense microstructure. High transmittances of the ceramics are obtained both in the visible and infrared regions. The optical band gap energies of them are 3.07–3.11 eV, close to other KNN-based materials. The relaxor-like characteristics, good dielectric, ferroelectric and piezoelectric properties of the ceramics have been obtained. The up-conversion photoluminescence spectra have been studied and obvious color-tunable emissions have been observed by modulating temperature. The fluorescence intensity ratio (FIR) value based on green emissions at 533 and 555 nm in the temperature ranging from 300 to 750 K have been investigated, giving the maximum sensitivity of ~ 0.0038 K?1. Furthermore, the FIR technique opens up a method to detect the Curie temperature of the ceramics. Owing to both optical and electrical properties, the KNLNB-Er-x transparent ceramics could be a promising candidate in the application of color-tunable solid-state lightings, optical temperature sensors, and electrical-optical coupling devices.  相似文献   

16.
《Ceramics International》2017,43(11):8202-8207
Effects of HfC addition on the microstructures and mechanical properties of TiN-based and TiB2-based ceramic tool materials have been investigated. Their pore number decreased gradually and relative densities increased progressively when the HfC content increased from 15 wt% to 25 wt%. The achieved high relative densities to some extent derived from the high sintering pressure and the metal phases. HfC grains of about 1 µm evenly dispersed in these materials. Both TiN and TiB2 grains become smaller with increasing HfC content from 15 wt% to 25 wt%, which indicated that HfC additive can inhibit TiN grain and TiB2 grain growth, leading to the formation of a fine microstructure advantageous to improve flexural strength. Especially, TiB2-HfC ceramics exhibited the typical core-rim structure that can enhance flexural strength and fracture toughness. The toughening mechanisms of TiB2-HfC ceramics mainly included the pullout of HfC grain, crack deflection, crack bridging, transgranular fracture and the core-rim structure, while the toughening mechanisms of TiN-HfC ceramics mainly included pullout of HfC grain, fine grain, crack deflection and crack bridging. Besides, HfC hardness had an important influence on the hardness of these materials. Higher HfC content increased Vickers hardness of TiN-HfC composite, but lowered Vickers hardness of TiB2-HfC composite, being HfC hardness higher than for TiN while HfC hardness is lower than for TiB2. The decrease of fracture toughness of TiN-HfC ceramic tool materials with the increase of HfC content was attributed to the formation of a weaker interface strength.  相似文献   

17.
The (Mg0.93Ca0.05Zn0.02)(Ti1?xZrx)O3 ceramics were prepared by conventional solid-state route. The dielectric properties and structure of (Mg0.93Ca0.05Zn0.02)(Ti1?xZrx)O3 ceramics were investigated. It has been found that MgTiO3 and CaTiO3 are the main phases and a second phase CaZrTi2O7 appeared in 95MCT ceramics co-doped with Zn–Zr. With Zn–Zr additive, the sintering temperature of 95MCT ceramics can be reduced to 1300 °C, and adjust the temperature coefficient of dielectric constant. With the increasing of Zr content, dielectric constant ?r decrease from 22.6 to 19.91 and the temperature coefficient of dielectric constant αc from 5.93 to 2.52 ppm/°C when x = 0.01, 0.02, 0.03 and 0.04 mol respectively. The 95MCT ceramics with x = 0.02 has a dielectric constant ?r of 22.02, a dielectric loss of 2.78 × 10?4 and a temperature coefficient of dielectric constant αc value of 2.98 ppm/°C.  相似文献   

18.
The densification of hot-pressed ZrN ceramics doped with Zr or Ti have been investigated at 1500–1700 °C. It is shown that either Zr or Ti additive can facilitate the densification process. ZrN with 20 mol% Zr or Ti (named ZNZ and ZNT) sintered at 1700 °C can achieve above 98% relative densities whereas densification temperature up to 2000 °C is necessary for pure ZrN. The densification improvements are attributed to solid solution of Zr or Ti into ZrN to form non-stoichiometric ZrN1?x or (Zr, Ti)N1?x. The microstructures and mechanical properties of ZNZ and ZNT samples have been examined. Large grain size and flat fracture surface existed in ZNT sample sintered at 1700 °C, which lead to poor toughness as low as 2.3 MPa m1/2. On the contrary, the fracture toughness of ZNZ sample sintered at 1700 °C was up to 5.9 MPa m1/2, attributed to fine and uniform grain size distribution.  相似文献   

19.
SrBi2Ta1.6Nb0.4O9 (SBTN) and SrBi2Ta2O9 (SBT) ceramics with typical bismuth layered perovskite structure were synthesized by hot-press sintering at 1000 °C for 2 h. The maximum relative density of as-sintered SBTN and SBT materials is 98.97%. The domain structure of SBTN and SBT was systemically characterized by means of TEM and HRTEM. The 90° domain walls were identified by the 90° rotation relationship of the electron diffraction pattern along the [0 0 1] zone axis. Irregular shaped and highly curved 180° domain wall were also observed in SBTN ceramics. The traditional α-fringes can be found in SBT, which are the evidence of large strains in hot-press sintering ceramics. Rod-like SrTa2O6 precipitates are also analyzed as well as its interface with the matrix.  相似文献   

20.
A novel non-symmetric zirconium guanidinato complex, [{Zr{ArNC(NMe2)N(SiMe3)}(μ2-Cl)Cl2}2] (Ar = 2,6-iPr2-C6H3), was synthesized and structurally characterized. Catalytic studies showed that the zirconium complex was active for ethylene polymerization with the activity of 4.98 × 105 g PE/mol Zr h. The influences of cocatalysts, Al/Zr molar ratios and ethylene pressures on the activities were investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号