首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The performance of solid oxide cells (SOCs) heavily relies on the population of three‐phase boundaries (TPBs) in the composite electrodes. In this study, SOC composite electrodes are described by percolating binary particle aggregates that are constructed from random loose packing models and classical sintering theories. Summed perimeters of the sintering necks represent the total TPB lengths. A case study has been carried out on lanthanum strontium manganite (LSM)–yttria‐stabilized zirconia (YSZ) composite electrodes. By employing three‐dimensional data that are converted from relevant two‐dimensional data, the TPB length of baseline LSM–YSZ electrodes investigated in this study is 35.4 μm μm–3. The parametric and sensitivity analyses show the changes of TPB lengths in functions of the weight fraction of powders, particle size and particle size ratio of powders, void fraction of electrodes, and density of materials. In the case of baseline LSM–YSZ electrodes, proper electrode design and optimization would result in 2–3 times of the enlargement of TPBs. Technical guidelines on the design and optimization of SOC composite electrodes are proposed.  相似文献   

2.
Bismuth oxide (Bi2O3) is a promising additive to decrease the sintering temperature of yttria-stabilized zirconia (YSZ)-based electrolyte for solid oxide fuel cell application. However, Bi2O3 tends to grow into large column bars (>50 µm) in a chemical coprecipitation method, which dramatically limits the mixing uniformity of Bi2O3 and YSZ, even much worse than that of mechanical mixing. In this study, the reaction temperature was increased from room temperature to 90°C to increase the number of nucleation during the violate reaction between Bi3+ solution and YSZ suspension in NaOH. On this basis, the violence of the reaction was further moderated by adding half of NaOH first, then YSZ powders and the other half of an NaOH solution. The size of Bi2O3 was further decreased to sub-micrometer and Bi2O3 was homogeneously mixed with YSZ particles, even when its addition amount was as large as 20 mol%. These composite powders effectively promoted the sintering behavior of YSZ. The sintering temperature of YSZ was decreased to 900 and 1000°C with 10 and 5 mol% Bi2O3 doping, respectively. Increasing the doping ratio induced severe volatilization of Bi2O3 and pore formation. Raising the sintering temperature (no more than 1200°C) enhanced the doping effect of Bi2O3 into the YSZ lattice but induced instability in the YSZ crystal structure.  相似文献   

3.
《Ceramics International》2023,49(13):21521-21529
Limiting current gas sensors with Pt electrodes are widely used to detect gaseous species, such as O2, CO, HC, and NOx, from exhaust gases generated by the incomplete combustion of fossil fuels. In this study, aperture-type limiting current sensors were fabricated based on La0.8Sr0.2MnO3 (LSM)–yttria-stabilized zirconia (YSZ) and LSM–Gd0.1Ce0.9O2-d (CGO)–YSZ composites. The potential of these composites as alternative electrodes for O2 and CO sensing was evaluated. The composite electrodes exhibited current–voltage curves that are typical for limiting current sensors. LSM–CGO–YSZ registered higher limiting current values than those of the commercial Pt and LSM–YSZ electrodes in O2 and CO atmospheres. The formation of a resistive secondary La2Zr2O7 phase at the LSM/YSZ interface of LSM–YSZ deteriorates the electrochemical reaction and increases the polarization resistance of the electrode in the CO environment. The addition of CGO prevented the formation of the secondary phase, which lowered the ohmic and polarization resistances of LSM–CGO–YSZ compared to that of the LSM–YSZ composite. However, increasing the CGO concentration from 10 to 40 wt% weakened the adhesion of LSM and reduced the triple phase boundaries, which increased the electrode polarization resistance in both O2 and CO atmospheres.  相似文献   

4.
Low-Temperature Fabrication of Oxide Composites for Solid-Oxide Fuel Cells   总被引:1,自引:0,他引:1  
Composites of yttria-stabilized zirconia (YSZ) with Sr-doped LaCrO3 (LSC) and Sr-doped LaMnO3 (LSM) were prepared by impregnation of a porous YSZ matrix with aqueous solutions of the appropriate metal salts, followed by sintering to various temperatures. XRD measurements showed that perovskite phases formed after sintering at 1073 K, a temperature well below that at which solid-state reactions with YSZ occur. The conductivities of the LSC–YSZ and LSM–YSZ composites prepared in this way were maximized at a sintering temperature of 1373 K for LSC–YSZ and 1523 K for LSM–YSZ, although reasonable conductivities were achieved at much lower temperatures. The conductivities of the two composites increased much more rapidly with the content of the conductive oxide than has been found with conventional composites formed by mixing and sintering the oxide powders. The implications for using this approach to develop novel electrodes for SOFC applications are discussed.  相似文献   

5.
The addition of small quantities of aluminum oxide (Al2O3) to 8 mol% yttria-stabilized zirconia (8YSZ) benefits conventional sintering by acting as a sintering aid and altering grain growth behavior. However, it is uncertain if these benefits observed during conventional sintering extend to flash sintering. In this work, nanoscale films of Al2O3 are deposited on 8YSZ powders by particle atomic layer deposition (ALD). The ALD-coated powders were flash sintered using voltage-to-current control and current rate experiments. The sintering behavior, microstructural evolution, and ionic conductivities were characterized. The addition of Al2O3 films changed the conductivity of the starting powder, effectively moving the flash onset temperature. The grain size of the samples flashed with current rate experiments was ~65% smaller than that of conventionally sintered samples. Measurement of grain size and estimates of sample density as a function of temperature during flash sintering showed that small quantities of Al2O3 can enhance grain growth and sintering of 8YSZ. This suggests that Al2O3 dissolves into the 8YSZ grain boundaries during flash sintering to form complexions that enhance the diffusion of species controlling these processes.  相似文献   

6.
《Ceramics International》2016,42(10):11772-11779
Equal amounts of Gd0.1Ce0.9O2−δ (GDC) were added to La0.65Sr0.3MnO3−δ/(Y2O3)0.08(ZrO2)0.92 (LSM/YSZ) powder either by physical mixing or by sol–gel process, to produce a porous cathode support for solid oxide fuel cells (SOFCs). The effect of the GDC mixing method was analyzed in view of sinterability, thermal expansion coefficient, microstructure, porosity, and electrical conductivity of the LSM/YSZ composite. GDC infiltrated LSM/YSZ (G-LY) composite showed a highly porous microstructure when compared with mechanically mixed LSM/YSZ (LY) and LSM/YSZ/GDC (LYG) composites. The cathode support composites were used to fabricate the button SOFCs by slurry coating of YSZ electrolyte and a nickel/YSZ anode functional layer, followed by co-firing at 1250 °C. The G-LY composite cathode-supported SOFC showed maximum power densities of 215, 316, and 396 mW cm−2 at 750, 800, and 850 °C, respectively, using dry hydrogen as fuel. Results showed that the GDC deposition by sol–gel process on LSM/YSZ powder before sintering is a promising technique for producing porous cathode support for the SOFCs.  相似文献   

7.
This article covers the theoretical and experimental approaches to oxygen reduction at the porous composite electrodes for fuel cells by analyses of ac-impedance spectra and potentiostatic current transient (PCT). First, the analysis methods based upon the thin-film agglomerate model and the random packing model were introduced to theoretically calculate the ac-impedance spectra. From the results, it is suggested that the capacitance dispersion in the high frequency range is closely associated with oxygen ion migration through the electrode. The deconvolution method by discrete Fourier transform and the PCT analysis method by inverse Laplace transform were also employed to simulate the distribution function of relaxation time and the PCTs, respectively. Finally, as an example of application, in the present work, we investigated the oxygen reduction mechanism at the porous (La0.85Sr0.15)0.9MnO3 (LSM)-yittria-stabilized zirconia (YSZ) composite electrodes as a function of sintering temperature by means of the analysis methods proposed above. From the dependences of the constant phase element exponent β for ion migration and the time to reach the steady-state current tst on the sintering temperature, the capacitance dispersion in the high frequency range was discussed in terms of the distribution of the relaxation times for ion migration, which was greatly affected by the YSZ grain size.  相似文献   

8.
This article investigates a method in further improvement of a (La0.8,Sr0.2)MnO3 (LSM)-Yttria-stabilized zirconia (YSZ) dual composite cathode by adding material with high ionic conductivity such as gadolinia-doped ceria (GDC). A nano-porous composite cathode containing LSM, YSZ, and GDC was prepared by a two-step polymerizable complex (PC) method which minimizes the formation of YSZ–GDC solid solution. The structure of the resulting LSM/GDC–YSZ dual composite cathode was such that the LSM and GDC phases were present on the YSZ core particles without formation of the La2Zr2O7, SrZrO3, and GDC–YSZ solid solution. At 800 °C, the electrode polarization resistance of the LSM/GDC–YSZ dual composite cathode decreased to 0.266 Ω cm2, compared with 0.385 Ω cm2 for the LSM/YSZ–YSZ dual composite cathode. In addition, the Ni–YSZ anode-supported single cell using a LSM/GDC–YSZ dual composite cathode with H2 as the fuel achieved a maximum power density of 0.65 W cm−2 at 800 °C.  相似文献   

9.
Low melting point and high ionic conductivity of γ-Bi2O3 make it a promising additive to decrease the sintering and operation temperatures of yttria stabilized zirconia (YSZ)-based electrolyte for solid oxide fuel cell application. Herein, γ-Bi2O3/YSZ composite powders with good uniformity and precise control of morphology and phase were successfully synthesized via a low cost chemical precipitation method. Both the concentration of NaOH solution and the reactant adding sequence affect the morphology and synthesis of γ-Bi2O3/YSZ composite powders. When the concentration of NaOH was in the range of 1.25–1.875 M, tetrahedron γ-Bi2O3/YSZ powders were synthesized. While, cubic structural γ-Bi2O3/YSZ powders were obtained when adding Bi3+ and YSZ suspension into 1.5 M NaOH solution. The addition of YSZ facilitates the fabrication of γ-Bi2O3 and widens its process window to a higher NaOH concentration. Thus synthesized γ-Bi2O3/YSZ composite powders effectively decrease the sintering temperature of YSZ to 1050°C due to the uniform distribution of γ-Bi2O3 inside YSZ powders. This work provides a facile method to fabricate γ-Bi2O3/YSZ composite powder with controlled morphology and phase, which will promote the mass production of low cost YSZ-based electrolyte for SOFC applications.  相似文献   

10.
An atmospheric-pressure plasma jet (APPJ) is applied to prepare porous perovskite materials, particularly of lanthanum strontium manganite La0.5Sr0.5MnO3 (LSM551) oxide powder and film. LSM nano powder around 50.0?nm is obtained, and characterized by X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscope. A spherical morphology with hydrangea-like shape is observed as associates to the pure tetragonal phase. LSM film is deposited onto yttria-stabilized zirconia (YSZ) electrolyte-support substrate as cathode layer for the operation in a solid oxide fuel cell at 600–900?°C operating temperatures. A series of symmetrical cells possessing high exchange current density of 30.12?mA/cm2 at 800?°C. The prepared samples are assessed as an object to discover the diffusion mechanism of oxygen pathways for LSM/YSZ system based on the microstructural (particles size, and porosities) and electrochemical (kinetic and impedance) data. The mechanism of oxygen pathways is directly associated with the triple phase boundary lengthiness, in which the surface and bulk pathways occurring in APPJ-prepared LSM layer on YSZ lead to an increasing in activity of oxygen reduction reaction. Moreover, a fabrication of desirable ternary metal oxide, LSM, with highly porous structure via an advance-innovative APPJ preparation is outlined.  相似文献   

11.
The properties of technical ceramics are highly dependent on their microstructure, which evolves during sintering. Sintering is the process by which ceramic parts are subjected to high temperatures to activate chemical diffusion and the consumption of porosity. During the initial stage of sintering, interparticle necks between neighboring particles form and subsequently increase in size, consuming porosity as the particle centers move closer together. To experimentally determine how this process depends on particle surface composition, particle atomic layer deposition (ALD) was used to deposit a thin film of amorphous aluminum oxide (Al2O3) onto yttria-stabilized tetragonal zirconia (3YSZ) particles, producing core-shell structured powders. The uniformity of the Al2O3 film was confirmed with transmission electron microscopy and energy dispersive spectroscopy. Scanning electron microscopy was used to observe microstructural evolution during sintering, and the dihedral angles of Al2O3 and 3YSZ grains were measured to determine the ratio of interfacial energies between the 3YSZ|3YSZ, 3YSZ|Al2O3, and Al2O3|Al2O3 interfaces. Analysis of the densification kinetics revealed that the initial stage of densification is dependent on the material at the surface of the particles (ie, the Al2O3 film) and is controlled by the diffusion of Al3+ cations through Al2O3. Once the Al2O3 film has coalesced, the sintering behavior is controlled by the densification of the core material (3YSZ). Thus, core-shell powders fabricated by particle ALD sinter by a two-step process where the kinetics are dependent on the material present at interparticle contacts.  相似文献   

12.
An analytical model is developed for the sintering kinetics of ceramic dual‐phase composites of the cathodes in solid oxide fuel cells (SOCFs). The model simulates the isothermal and pressureless sintering processes and formulates volumetric three‐phase boundary (TPB) length and porosity as a function of sintering time, surface/interface energies, grain‐boundary diffusivities, particle sizes, and dual‐phase composition. Lanthanum strontium manganite (LSM)–yttria‐stabilized zirconia (YSZ) composite is used as an example to develop and validate the model. LSM–YSZ composites are sintered at 1100°C for various sintering time, and the TPB length and porosity are estimated from SEM images by using stereological analysis to validate the model. Parametric studies are performed at various conditions, illustrating novel insights into the sintering kinetics. This analytical model is generic and applicable to the sintering kinetics of ceramic dual‐phase composites for use in solid‐state electrochemical devices, such as SOCFs, electrolyzers, and gas separation membranes. This analytical model can also be easily extended to the sintering processes of other ceramic dual‐phase and triple‐phase composites.  相似文献   

13.
《Ceramics International》2020,46(2):1307-1313
Sintering behavior and phase transformations in yttria-stabilized zirconia (YSZ)-based thermal barrier coatings (TBCs) control their applications in gas turbines operated at high working temperatures required for improved fuel efficiency. In this work, to control the sintering behavior and reduce phase transformations in YSZ-based TBCs, lanthanum zirconate (LZ) powder was blended with the YSZ feedstock powder, and YSZ-LZ composite coatings were fabricated using the air plasma spraying method. The influence of mixture weight ratio of YSZ to LZ (75:25, 50:50, and 25:75) on the sintering behavior and phase stability of the composite coatings was investigated through the isothermal exposure test at 1100, 1300, and 1400 °C. The as-coated composites showed the pyrochlore and tetragonal phases, indicating that the phases are LZ and YSZ, respectively. As the exposure temperature was increased, the phase transformation of YSZ from the tetragonal phase to the monoclinic phase was accelerated. The content of monoclinic phase was changed with the increasing LZ content after thermal exposure at 1300 and 1400 °C. In addition, the composites showed different sintering and bridging behaviors at the adjacent splats with the LZ content. The composites prepared with the blended feedstock powders of LZ and YSZ produced an obvious effect on the phase stability and mechanical properties.  相似文献   

14.
《Ceramics International》2015,41(8):9753-9762
Glass-based composite coating materials incorporating particles of alumina or YSZ were prepared by reaction sintering. It was revealed that phase evolution played a key role on thermal expansion behavior of the composite coating materials. Both precipitating of t-ZrO2 crystals and adding YSZ inclusions could raise CTEs of the glass-based matrix, while the formation of zircon produced the reverse effect. Especially, alumina additives retarded the crystallization of the base glass and reduced reaction rates between YSZ and the glass matrix remarkably. Thus, the Al2O3/YSZ/glass tri-composites could serve as an environmental barrier coating for intermetallics and superalloys because of the stabilized microstructure.  相似文献   

15.
Spray-freezing/freeze-drying technique was applied to the synthesis of Li2FeSiO4/C composite powders using solutions containing various carbon sources, water-soluble and colloidal carbon, followed by heat treatment. The effects of the carbon sources on the microstructure and battery performance of the synthesized composite powders were investigated. The microstructures of the composite powders were clearly different when different carbon sources were used, ascribed from the thermal behavior of the carbon sources during the heat treatment. It was possible to control the microstructures of Li2FeSiO4/C composite powders by combining different carbon sources, and the synthesized composite powders exhibited high discharge capacities by mixing with only a binder for cathode. The composite powders using glucose and Ketjenblack dispersion as carbon sources delivered 165 mAh/g at first discharge capacity at 0.1?C. The developed chain structure suitable for conducting paths in the electrodes and a higher-specific BET surface area, attributed from Ketjenblack, were likely responsible for the higher performance.  相似文献   

16.
Nano-sized 8 mol% yttria stabilized zirconia (YSZ) powders were synthesized by the combustion method using two different fuels (urea and glycine). The effect of the nature and amount of the fuel was investigated on the phase structure, particle size and microstructure of the resulted YSZ ceramics. The results showed that YSZ powders synthesized using urea presented larger crystallite size and lower specific surface area than those derived from glycine route. This behavior is closely related to the combustion flame temperature. The elevated temperature during combustion synthesis with urea favored the formation of large aggregates, instead of loose and porous particles as observed for glycine route. As a consequence, the best result in terms of densification was obtained for the pellets prepared by sintering of powders synthesized through glycine route.  相似文献   

17.
A comprehensive micromodel to predict the electrochemical performance of porous composite LSM‐YSZ cathodes in solid oxide fuel cells (SOFCs) is developed. The random packing sphere model is used to estimate the cathode microstructural properties required for the micromodel. The micromodel developed takes into account the complex interdependency among the mass transport, electron and ion transports, and the electrochemical reaction, and can be used for optimization of the microstructure of porous LSM‐YSZ composite cathodes. It is shown that the electrochemical performance of these cathodes depends on the microstructural variables of the cathode porosity, thickness, particle size ratio, and size and volume fraction of LSM particles. The effect of these microstructural variables on the cathode total resistance, as the objective function to achieve the optimum microstructure for the cathode, is studied through computer simulation. The results indicated that for a LSM‐YSZ cathode operated at the average temperature of 1073.15 K, bulk oxygen partial pressure of 0.21 atm, and total current density of 5000 Am?2, and constrained to the minimum value of 1 μm for the size of LSM particles and 0.25 for the cathode porosity, the optimum microstructure is obtained at the particle size ratio of unity, LSM particle size of 1 μm and volume fraction of 0.413, porosity of 0.25, and thickness of 60 μm. The cathode total resistance corresponding to the cathode optimized is estimated to be 0.291 Ω cm2. © 2011 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

18.
During high temperature service, a series of microstructure and phase evolutions occur in thermal barrier coatings (TBCs), which result in degradation of thermal insulation and durability. In this study, the sintering behavior of an air plasma sprayed 8 wt% YSZ coating deposited using electro-sprayed nanostructured particles (ESP) as feedstock powder was investigated and compared with conventional YSZ coating deposited using hollow spherical powders (HOSP). Due to the distinct asymmetric porous structure formed by nanosized YSZ particles, the ESP powder was partially melted in the plasma jet during the deposition, which resulted in the formation of a nanostructured coating that consisted of porous nanozones and dense zones. The ESP coating not only shows a significantly lower initial thermal conductivity of 0.70 W/mK, but also exhibits a stronger sintering resistance in terms of phase stability and thermal insulation compared to the conventional coating. When subjected to prolonged sintering at 1400°C for 128 hours, the thermal conductivity of the ESP coating would gradually increase to about half that of the HOSP coating at 1.29 W/mK. These differences are ascribed to the interaction among different sintering behavior between nanozones and dense zones.  相似文献   

19.
Cubic-stabilized zirconia ceramic composites have been synthesized by conventional sintering, starting from commercial m-ZrO2, Y2O3, and waste-derived magnesium aluminate spinel (MA) powders. In this work, the effect of sintering temperature and MA content on stabilization and densification properties of YSZ have been duly considered. MA-free YSZ0 composite sintered at 1600°C-1700°C revealed m- and t-ZrO2 dual-phase structure where its m-ZrO2 was partially stabilized upon temperature rising into tetragonal phase by Y3+ diffusion inside zirconia structure. YSZ10-50 composites containing 10-50 wt% MA demonstrated dissimilar behavior where their m-ZrO2 was transformed and stabilized into a cubic form by diffusion of Y3+, Mg+2, and Al+3 inside zirconia lattice. Furthermore, densification of YSZ10-50 powder mixtures by conventional sintering at 1600°C for 2 hours resulted in fully dense compacts with micrometer-sized grains. The outcomes indicate that MA has a significant effect on m-ZrO2 stabilization into the cubic phase structure at room temperature. In this respect, this study offers huge potentials for developing fully stabilized c-ZrO2 ceramics that could be possibly used as industrial ceramics for structural applications of harsh chemical and thermal environmental conditions.  相似文献   

20.
The mechanical behavior and microstructure of highly densified, spherically shaped, polycrystalline Al2O3–YSZ composites, processed from pseudoboehmite powders by sol–gel is reported here. Processing was carried out by combining nanometric sized α-Al2O3 (120 nm) seeds and YSZ particles of tetragonal structure. The YSZ particles were homogeneously distributed in a coarse-grained matrix of alumina, both inside grains and along grain boundaries. Fracture surfaces, achieved by impact tests showed toughening effects of the zirconia particles. The tetragonality of the YSZ phase stability even after fracture events and fracture toughness measurements by Vickers indentation, where the crack tip interacts with YSZ particles, are all provided and discussed. The local mechanical properties, such as elastic modulus, indentation hardness and the onset of plastic deformation or fracture contact pressure of both YSZ particles and the Al2O3 matrix were quantified by nanoindentation. Evidence of coercive contact pressure was observed in YSZ from indentation stress–strain curves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号