首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Ceramics International》2017,43(2):1930-1936
Rapid in-situ solidification of SiO2 suspension under the joint action of releasing calcium ions and shifting pH has been proposed. When the suspension was heated up to 60 ℃, decomposition of calcium iodate which released calcium ions, as well as hydrolysis of diacetate (GDA) which shifted the pH toward the isoelectric point, both contributed to the solidification of suspension. The controlled coagulation of SiO2 suspension could be realized via controlled release of high valence counter ions and pH shift at 60 ℃ within 30 min, which could considerably shorten the coagulation time compared with present reported results (1–3 h). Green body prepared by heating the SiO2 suspension with 6.5 g L−1 calcium iodate and 2.0 vol% GDA at 60 ℃ for 30 min shows uniform microstructure with compressive strength of close to 0.3 MPa. SiO2 ceramics sintered at 1275 ℃ for 3 h possess homogeneous microstructure with bulk density of 2.06 g cm−3 and flexural strength of 40.3 MPa.  相似文献   

2.
《Ceramics International》2017,43(13):9926-9933
A novel rapid, uniform and non-contamination in-situ solidification method for alumina suspension by DCC-HVCI method using MgO sintering additive as coagulating agent was reported. MgO was used to release Mg2+ in suspensions via reaction with acetic acid generated from glycerol diacetate (GDA) at elevated temperature as well as to improve density and suppress grain growth of alumina ceramics during sintering. Influence of adding 0.7 wt% MgO with 2.0 vol% GDA in alumina suspension on coagulation process and properties of green bodies and sintered samples were investigated. It was indicated that the controlled coagulation of the suspension could be achieved after treating at 70 °C for 10 min. Homogeneous composition distribution of Mg element in EDS result indicated the uniform solidification of suspensions. Compressive strength of wet-coagulated bodies is 2.09±0.25 MPa. Dense alumina ceramics with relative density of 99.2% and flexural strength of 354±16 MPa sintered at 1650 °C for 4 h present homogeneous microstructure. The result indicated that the novel DCC-HVCI method via a sintering additive reaction with no contamination, short coagulation time and uniform in-situ solidification is a promising colloidal forming method for preparing high-performance ceramic components with complex shape.  相似文献   

3.
《Ceramics International》2016,42(3):4347-4353
A direct coagulation casting method for silicon nitride suspension via dispersant reaction was reported. Tetramethylammonium hydroxide (TMAOH) was used as dispersant to prepare silicon nitride suspension with high solid loading and low viscosity. Influences of TMAOH and pH value on the dispersion of silicon nitride powder were investigated. Glycerol diacetate (GDA) was used to coagulate the silicon nitride suspension. Influences of the concentration of glycerol diacetate on the viscosity and pH value of the suspension were investigated. It was indicated that high viscosity sufficient to coagulate the suspension was achieved by adding 1.0–2.0 vol% glycerol diacetate at 40–70 °C. The coagulation mechanism was proposed that the silicon nitride suspension was destabilized by dispersant reacting with acetic acid which was hydrolyzed from glycerol diacetate at elevated temperature. Coagulated samples could be demolded without deformation by treating 50 vol% silicon nitride suspensions with 0.2 wt% tetramethylammonium hydroxide and 1.0–2.0 vol% glycerol diacetate at different temperatures. Dense silicon nitride ceramics with relative density above 98.8% had been prepared by this method using glycerol diacetate as coagulating agent sintered by different methods.  相似文献   

4.
A serial of multi-walled carbon nanotubes (MWCNTs) reinforced geopolymer composites were prepared, and then heated at elevated temperature to fabricate MWCNTs/leucite composites by in situ transformation. Effects of high-temperature treatment on the microstructure evolution and mechanical performance of the composites were investigated. The results indicated that the introduction of MWCNTs could improve the mechanical properties of geopolymer, and the optimum content was 3 wt%. The mechanical performance declined instead with the further increase in MWCNTs content up to 5 wt%, which could be attributed to the agglomeration of MWCNTs. Significant improvements in mechanical properties were achieved after the composites were treated in a temperature range from 950 °C to 1200 °C relative to their original state before heat treatment. The significant improvements could be described to the matrix densification, and leucite formation as well as the proper interface bonding state between carbon nanotube and leucite matrix.  相似文献   

5.
《Ceramics International》2017,43(14):11361-11366
A novel temperature induced gelation method for alumina suspension using oleic acid as dispersant is reported. Non–aqueous suspension with high solid loading and low viscosity is prepared using normal octane as solvent. Influence of oleic acid on the dispersion of suspension was investigated. There was a well disperse alumina suspension with 1.3 wt% oleic acid. Influence of gelation temperature on the coagulation process and properties of green body was investigated. The sufficiently high viscosity to coagulate the suspension was achieved at −20 °C. The gelation temperature was controlled between the melting point of dispersant and solvent. The gelation mechanism is proposed that alumina suspension is destabilized by dispersant separating out from the solvent and removing from the alumina particles surface. The alumina green body with wet compressive strength of 1.07 MPa can be demolded without deformation by treating 53 vol% alumina suspension at −20 °C for 12 h. After being sintered at 1550 °C for 3 h, dense alumina ceramics with relative density of 98.62% and flexural strength of 371±25 MPa have been obtained by this method.  相似文献   

6.
《Ceramics International》2017,43(6):5007-5013
The scope of this paper includes preparation and characterisation of dense silicon carbide matrix composites reinforced with multilayer graphene (MLG). Application of graphene as a reinforcement phase should simultaneously improve mechanical properties of SiC matrix composites and act as one of the sintering activators. In the present work the mechanical properties and the microstructure changes of samples sintered with different additions of graphene (0.5, 1, 2, 3, 4 wt%) and boron (0.3, 1 and 2 wt%) were examined. The composites were consolidated at two different temperatures (1800 °C and 1900 °C) using the Spark Plasma Sintering method (SPS). Reference samples with the addition of graphite as a source of carbon (1 and 3 wt%) were also sintered in the same conditions. The abovementioned amounts of graphite are an optimal content which is essential to obtain high density of samples [1], [2], [3], [4], [5], [6], [7], [8], [9]. The influence of MLG on density, mechanical properties and phase structure of the sintered samples were investigated. A high rate of densification for the composites with 0.3 wt% of B and 1 wt% of MLG sintered at 1900 °C was observed. Moreover, these composites showed the highest average of microhardness (2663 HV0.5) and single-phase structure.  相似文献   

7.
The present work deals with the preparation of stable alumina + silica suspensions with high solid loading for the production of spray-dried composite powders. These composite powders are to be used for reactive plasma spraying whereby the formation of mullite and the coating on a ceramic substrate are achieved in a single step process. Electrostatic stabilisation of alumina and silica suspensions has been studied as a function of pH. Silica suspensions are most stable at basic pH whereas alumina suspensions are stable at acidic pH. The addition of ammonium polymethacrylate (APMA) makes it possible to stabilise alumina and prepare a stable 50 wt% alumina + silica suspension at pH 10. The optimum amounts of dispersant and binder have been determined by zeta potential, viscosity and sedimentation measurements. Spray drying of the suspension yields composite powders whose morphology, size distribution and flowability have been characterized before realizing reactive plasma spraying tests.  相似文献   

8.
Effects of 1600 °C annealing atmosphere on microstructures and mechanical properties of the C/SiC composites fabricated by PIP route were remarkable. Due to carbothermic reductions, the ratios of weight loss of the C/SiC composites were all above 7 wt% in 1 h. Consequently, the mechanical properties all had a significant drop during the first hour of annealing because of the bonding between the fibers and matrix remarkably weaken by cracks and pores. And then the flexural strengths gradually decreased with the annealing time increasing, when the flexural moduli slightly changed within the range of 44.2–49.7 GPa. However, the fracture behaviors of the C/SiC composites annealed under Ar faster became brittle than the C/SiC composites annealed under vacuum. The C/SiC composites annealed under Ar for 5 h and under vacuum for 10 h both became brittle mainly due to the sensitive to annealing of the weak carbon interphase, while the C/SiC composites annealed under Ar for 7 h became brittle mainly due to the chemical bonding between the fibers and matrix. And these phenomena were confirmed by the post densification and the stress-releasing annealing.  相似文献   

9.
《Ceramics International》2017,43(12):8743-8754
The strength integrity and chemical stability of porous alumina ceramics operating under extreme service conditions are of major importance in understanding their service behavior if they are to stand the test of time. In the present study, the effect of porosity and different pore former type on the mechanical strength and corrosion resistance properties of porous alumina ceramics have been studied. Given the potential of agricultural wastes as pore-forming agents (PFAs), a series of porous alumina ceramics (Al2O3-xPFA; x=5, 10, 15 and 20 wt%) were successfully prepared from rice husk (RH) and sugarcane bagasse (SCB) through the powder metallurgy technique. Experimental results showed that the porosity (44–67%) and the pore size (70–178 µm) of porous alumina samples maintained a linear relationship with the PFA loading. Comprehensive mechanical strength characterization of the porous alumina samples was conducted not just as a function of porosity but also as a function of the different PFA type used. Overall, the mechanical properties showed an inverse relationship with the porosity as the developed porous alumina samples exhibited tensile and compressive strengths of 20.4–1.5 MPa and 179.5–10.9 MPa respectively. Moreover, higher strengths were observed in the SCB shaped samples up to the 15 wt% PFA mark, while beyond this point, the silica peak observed in the XRD pattern of the RH shaped samples favored their relatively high strength. The corrosion resistance characterization of the porous alumina samples in hot 10 wt% NaOH and 20 wt% H2SO4 solutions was also investigated by considering sample formulations with 5–15 wt% PFA addition. With increasing porosity, the mass loss range in RH and SCB shaped samples after corrosion in NaOH solution for 8 h were 1.25–3.6% and 0.44–2.9% respectively; on the other hand, after corrosion in H2SO4 solution for 8 h, the mass loss range in RH and SCB shaped samples were 0.62–1.5% and 0.68–3.3% respectively.  相似文献   

10.
A novel forming method for preparing porous alumina ceramics using alumina fibers as raw materials by direct coagulation casting (DCC) combined with 3D printing was proposed. Porous fibrous alumina ceramics were fabricated through temperature induced coagulation of aqueous-based DCC process using sodium tripolyphosphate (STPP) as dispersant and adding K2SO4 as removable sintering additives. The sacrificial coated sand molds was fabricated by 3D printing technology, followed by the infiltration of silica sol solution for the subsequent suspension casting. Stable alumina suspension of 40 vol% solid loading was obtained by adding 2.0 wt% STPP and 40 wt% K2SO4. The controlled coagulation of the suspension could be realized after heating at 90 °C for about 35 min. The ceramic sample sintered at 1450 °C for 2 h showed the highest compressive strength of 24.33 MPa with porosity of 57.38%. All samples sintered at 1300–1450 °C had uniform pore size distributions with average pore size of 7.2 µm, which indicated the good structure stability when sintered at high temperature.  相似文献   

11.
Short ZrO2 fibers (ZrO2(f)) reinforced NiFe2O4 ceramic composites were fabricated by cold pressing process. The phase composition, microstructure, mechanical properties and fiber/matrix interface of the composites were investigated by X-ray diffraction, scanning electron microscopy and mechanical testing machines. ZrO2(f) show good thermodynamic and chemical compatibility with NiFe2O4 ceramic matrix and effectively enhanced the mechanical properties. The toughening mechanisms are fiber bridging, interfacial debonding, fiber pullout, phase transformation and the matrix constraint effect. By incorporation of 3 wt% fibers with the average length of 5~6 mm, the bending strength and fracture toughness of the composites reached 88.92 MPa and 4.62 MPa m1/2, respectively, while the strength conservation ratio after thermal shock increased from 48.85% to 75.86%. The weak interface bonding built up between ZrO2(f) and NiFe2O4 facilitates the reinforcing effects of the fibers to operate.  相似文献   

12.
《Ceramics International》2017,43(14):10645-10653
Alumina-cubic boron nitride (cBN) composites were prepared using the spark plasma sintering (SPS) technique. Alpha-alumina powders with particle sizes of ∼15 µm and ∼150 nm were used as the matrix while cBN particles with and without nickel coating were used as reinforcement agents. The amount of both coated and uncoated cBN reinforcements for each type of matrix was varied between 10 to 30 wt%. The powder materials were sintered at a temperature of 1400 °C under a constant uniaxial pressure of 50 MPa. We studied the effect of the size of the starting alumina powder particles, as well as the effect of the nickel coating, on the phase transformation from cBN to hBN (hexagonal boron nitride) and on the thermo-mechanical properties of the composites. In contrast to micro-sized alumina, utilization of nano-sized alumina as the starting powder was observed to have played a pivotal role in preventing the cBN-to-hBN transformation. The composites prepared using nano-sized alumina reinforced with nickel-coated 30 wt% cBN showed the highest relative density of 99% along with the highest Vickers hardness (Hv2) value of 29 GPa. Because the compositions made with micro-sized alumina underwent the phase transformation from cBN to hBN, their relative densification as well as hardness values were relatively low (20.9–22.8 GPa). However, the nickel coating on the cBN reinforcement particles hindered the cBN-to-hBN transformation in the micro-sized alumina matrix, resulting in improved hardness values of up to 24.64 GPa.  相似文献   

13.
《Ceramics International》2016,42(8):9821-9829
Since its invention, alumina ceramics have been extensively investigated for potential various applications. However, their intrinsic brittle nature is still an insurmountable obstacle when they are applied as structural components. This paper provides a simple routs to prepare ductile alumina based composites with the addition of chopped carbon fiber (Csf/Al2O3-BN). Effects of fiber length and sintering temperature on the microstructure, phase composition, mechanical properties together with fracture behavior were systematically investigated. The results showed that composites with mixed fiber lengths of 12 mm and 1 mm exhibited homogeneous microstructure and striking enhancement in mechanical performances compared with composites with other fiber length. With the increase in sintering temperature from 1500 °C to 1650 °C, interfacial bonding strength increased and interface state converted from mechanical interlocking at 1500 °C into chemical bonding at 1650 °C. Chemical reaction in the composites degraded carbon fiber properties, which resulted in the decrease in mechanical performance of the composites.  相似文献   

14.
Sol gel process of silica powders dispersed in silica sol has been used to obtain a suitable suspension for the sol infiltration technique of fibre-reinforced ceramics. Efforts have been focused on analysing the effects of polyelectrolyte content, pH, solid load and concentration of gelling agent on the flow behaviour of silica suspensions. The most adequate suspension to manufacture the matrix of composites is a weak flocculated suspension with negligible thixotropic behaviour at pH  9.5, which is composed of silica microparticles dispersed in silica sol with 41 vol.% of solid load and 1.8 wt.% of Duramax D3005. This suspension easily undergoes a transition to a gel by a slight alteration of stability conditions adding 0.08 M of NH4Cl, which reduces both the electrostatic repulsion and the pH to 8. Moreover, silica sol promotes the densification of ceramics up to 70% after sintering at 900 °C, allowing porous matrix processing of the composites.  相似文献   

15.
《Ceramics International》2017,43(12):9005-9011
Silicon carbide (SiC) ceramics have superior properties in terms of wear, corrosion, oxidation, thermal shock resistance and high temperature mechanical behavior, as well. However, they can be sintered with difficulties and have poor fracture toughness, which hinder their widespread industrial applications. In this work, SiC-based ceramics mixed with 1 wt% and 3 wt% multilayer graphene (MLG), respectively, were fabricated by solid-state spark plasma sintering (SPS) at different temperatures. We report the processing of MLG/SiC composites, study their microstructure and mechanical properties and demonstrate the influence of MLG loading on the microstructure of sintered bodies. It was found that MLG improved the mechanical properties of SiC-based composites due to formation of special microstructure. Some toughening mechanism due to MLG pull-out and crack bridging of particles was also observed. Addition of 3 wt% MLG to SiC matrix increased the Vickers hardness and Young's modulus of composite, even at a sintering temperature of 1700 °C. Furthermore, the fracture toughness increased by 20% for the 1 wt% MLG-containing composite as compared to the monolithic SiC selected for reference material. We demonstrated that the evolved 4H-SiC grains, as well as the strong interactions among the grains in the porous free matrices played an important role in the mechanical properties of sintered composite ceramics.  相似文献   

16.
In order to improve the fracture toughness of ZrB2 ceramics, as-received and heat treated short carbon fiber reinforced ZrB2-based composites were fabricated by hot pressing. The toughening effects of the fibers were studied by investigating the relative density, phase composition, microstructure and mechanical properties of the composites. It was found that the densification behavior, microstructure and mechanical properties of the composites were influenced by the fibers’ surface condition. The heat treated fiber was more appropriate to toughen the ZrB2-based composites, due to the high graphitization degree, low surface activity and weak interfacial bonding. As a result, the fracture toughness of the composites with heat-treated fiber is 7.62 ± 0.12 MPa m1/2, which increased by 10% as compared to the composites with as-received fiber (6.89 ± 0.16 MPa m1/2).  相似文献   

17.
A new method to weaken the interfacial bonding and increase the strength of 3D mullite fiber reinforced mullite matrix (Muf/Mu) composites is proposed and tested in this paper. Firstly, Muf/Mu composites were fabricated through sol–gel process with varied sintering temperature. Then, the effects of sintering temperature on mechanical properties of the composites were tested. As sintering temperature was raised from 1000 °C to 1300 °C, the three-point flexural strength of the composites firstly decreased from 66.17 MPa to 41.83 MPa, and then increased to 63.17 MPa. In order to explain the relationship between composite strength and sintering temperature, morphology and structure of the mullite fibers and mullite matrix after the same heat-treatment as in the fabrication conditions of the composites were also investigated. Finally, it is concluded that this strength variation results from the combined effects of matrix densification, interfacial bonding and fiber degradation under different sintering temperatures.  相似文献   

18.
《Ceramics International》2017,43(5):4630-4637
The thermal and microstructure stability of Nextel 610 fibers has great influence on high-temperature application of Nextel 610 fiber-reinforced ceramic matrix composites. In this work, Nextel 610 fibers were heat treated at 500–700 °C in vacuum and 800–1100 °C in Ar atmosphere, respectively. The sizing agent on Nextel 610 fiber surface could be decomposed into pyrolytic carbon, SiC and gaseous little molecules at lower temperatures, otherwise it was decomposed mainly in the form of gaseous little molecules at higher temperatures, so that the complex permittivity firstly increased and then decreased with the increasing of temperatures. The results showed that the annealed Nextel 610 fiber (T>900 °C) could be regarded as electromagnetic wave transparent fibers, while the tensile strength had declined by half when the temperature increased to 1100 °C. Therefore, Nextel 610 fibers after being annealed at higher temperatures could be further used as reinforcement to prepare high temperature ceramic matrix composites for electromagnetic wave absorption and transparent applications.  相似文献   

19.
Mesoporous carbon incorporated with different alumina contents has been prepared by chelate-assisted co-assembly method. These composites were used as supports for Pt particles, and the as-prepared catalysts were reduced at 873 K in hydrogen atmosphere. Our current study by using N2 sorption, X-ray diffraction and transmission electron microscopy revealed that carbon incorporated with 10–15 wt% alumina was favorable for the high Pt dispersion and retained the mesostructure of carbon. Moreover, 15 wt% alumina-carbon composite supported Pt particles modified by cinchonidine afforded the highest (84.8%) enantiomeric excess and could be reused at least five times for the asymmetric hydrogenation of ethyl 2-oxo-4-phenylbutyrate in acetic acid.  相似文献   

20.
High quality alumina ceramics were fabricated by hot-pressed sintering using bimodal alumina with superfine component as raw material and magnesium aluminosilicate (MAS) glass as sintering aid. Densification behavior, microstructure evolution and mechanical properties of alumina were investigated from 1300 °C to 1450 °C. The bimodal alumina powders were sintered to 99.8% of the theoretical value at 1400 °C and a comparative dense microstructure with a few plate-like abnormal grains was observed. With increase of sintering temperature up to 1450 °C, many fine matrix grains were consumed and quite a few abnormal grains impinged upon each other. For the alumina ceramics hot-pressed from bimodal alumina with 30 wt.% superfine component, optimal mechanical properties were obtained at 1400 °C. The bending strength and fracture toughness were 522 MPa and 5.0 MPa m1/2, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号