首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
通过等温形变研究了形变参数(形变温度、形变速率、形变量)对高强度汽车钢WHT1300HF的微观组织转变和形貌的影响规律。研究结果表明:增加奥氏体等温形变量,有利于铁素体的缺陷形核,促进了形变奥氏体向铁素体转变;奥氏体的形变强化导致马氏体相变阻力增大,马氏体相变开始温度(Ms)下降,细小晶粒数量和小角度晶界数量增多;增加奥氏体等温形变(40%)速率能同时促进马氏体和铁素体相变,但马氏体体积分数和小角度晶界数量减少,细小晶粒数量略有提高;降低等温形变温度加剧奥氏体的形变强化,导致Ms温度下降,马氏体体积分数、小角度晶界比例减少,细小晶粒数量增多,铁素体含量明显增加。  相似文献   

2.
朱鹏举 《江苏冶金》2006,34(5):13-16
建立了C-Mn钢在控制轧制和控制冷却生产中微观组织演变和力学性能预测的物理冶金模型。模型包括加热、再结晶、相变和力学性能四部分,分别描述了中厚板热轧及冷却过程中的物理冶金现象。根据现场数据,计算了轧制过程奥氏体晶粒尺寸和再结晶分数的演变,预测了在不同工艺条件下连续冷却转变各相的体积分数和铁素体的晶粒尺寸等显微组织参数和相关的力学性能,预测结果和实测值吻合较好。  相似文献   

3.
采用热膨胀仪测试研究了Q450NQR1钢连铸坯5℃·min-1及20℃·min-1冷却速率下的线性热膨胀(ΔL/L0)和热膨胀系数随温度的变化规律.在此基础上,建立了一种基于平均原子体积的相体积计算模型,量化研究了奥氏体相变过程中各相体积分数的变化规律,并在将计算结果与显微组织观察结果对比分析基础上,讨论了连铸冷却速率对铸坯奥氏体相变过程的影响.结果表明:该计算模型可以较为准确地描述铸坯的奥氏体相变过程,适用于多相连续析出相变;随着冷却速率的增大,铸坯热膨胀曲线中对应于铁素体和珠光体析出的两个变化峰向低温区移动,峰值明显增大;冷却速率由5℃·min-1上升至20℃·min-1时,铁素体及珠光体起始析出温度分别降低约32℃和37℃,最终体积分数分别由0.894和0.106变为0.945和0.055.   相似文献   

4.
400 MPa级C-Mn钢控轧控冷生产过程组织-性能的预测   总被引:4,自引:0,他引:4  
许云波  刘相华  王国栋 《钢铁》2003,38(2):46-50
建立了C-Mn钢在控制轧制和控制冷却生产中微观组织演变和力学性能预测的物理冶金模型,模型包括加热、再结晶、相变和力学性能四部分,分别描述了带热轧及冷却过程中的物理冶金现象,根据现场数据,计算了轧制过程奥氏体晶粒尺寸和再结晶分数的演变,预测了在不同工艺条件下连续冷却转变各相的体积分数和铁素体的晶粒尺寸等显微组织参数和相关的力学性能,预测结果和实测值吻合较好。  相似文献   

5.
本文建立了C-Mn钢在控制轧制和控制冷却生产中微观组织演变和力学性能预测的物理冶金模型。模型包括加热、再结晶、相变和力学性能四部分,分别描述了中厚板热轧度冷却过程中的物理冶金现象。根据现场数据,计算了轧制过程奥氏体晶粒尺寸和再结晶分数的演变,预测了在不同工艺条件下连续冷却转变各相的体积分数和铁素体的晶粒尺寸等显微组织参数和相关的力学性能,预测结果和实测值吻合较好。  相似文献   

6.
运用高温淬火相变仪和高温共聚焦显微镜等设备,研究非调质中碳钢中晶内铁素体受冷却速度和奥氏体晶粒的影响规律。进一步对晶内铁素体的形核长大进行探究,为洁净钢冶炼提供依据。试验表明,冷却速度为0.1℃/s时获得等轴形铁素体最佳,并且冷却速度影响着铁素体的相变温度;保温时间600 s时得到的尺寸较小的奥氏体更适宜铁素体在晶界处形成。  相似文献   

7.
利用Gleeble 3800热模拟试验机,结合膨胀仪研究了微量铜和砷对连续加热过程和冷却过程中Ti-IF钢相变动力学的影响;结合光学显微镜和扫描电子显微镜,模拟研究了微量铜和砷对不同热轧终轧温度条件下TiIF钢的铁素体晶粒尺寸的影响。结果表明:与几乎不含铜和砷的Ti-IF钢相比,铜、砷的质量分数为0.08%、0.04%的Ti-IF钢中的铜和砷显著提高连续加热过程中Ti-IF钢奥氏体相变的开始温度和连续冷却过程中铁素体相变的结束温度。这主要是由于砷是封闭铁基奥氏体区的元素。由于微量砷提高铁素体相变的结束温度,导致铁素体晶粒尺寸反常粗大。因此,对于残余砷含量较高的Ti-IF钢,应适当控制较高的热轧终轧温度,以避免形成粗大的铁素体组织。  相似文献   

8.
硼对低碳钢晶粒尺寸的影响   总被引:3,自引:0,他引:3  
赵振华  陈伟庆  袁辉  李永东 《钢铁》2006,41(3):67-70
研究了硼对低碳钢晶粒尺寸的影响,结果表明:低碳钢中酸溶硼([B]s)的质量分数大于0.005%时,随酸溶硼的质量分数增加,铁素体晶粒尺寸明显变大.主要原因为硼的加入使钢的奥氏体晶粒增大,从而使铁素体晶粒尺寸变大;硼的加入抑制铁素体形核并降低相变开始的实际温度,孕育期变长,从而使铁素体晶粒尺寸变大.冷却速度为0.5~5℃/s,随冷却速度加快,晶粒尺寸明显减小;冷却速度为5~15℃/s,晶粒尺寸的变化不大.冷却速度大于5℃/s时,含硼低碳钢明显出现贝氏体,因此热轧后盘条的冷却速度最好控制在5℃/s以下.  相似文献   

9.
姚浩  任强  张立峰 《炼钢》2022,(2):1-10+24
在低合金高强钢中,形成大量的针状铁素体是满足高强度和高韧性的主要方法。影响针状铁素体体积分数的几个关键因素在不同的文献均有体现,也有综述文献总结了针状铁素体形核机制和有利于形核的夹杂物特征,但是并没有系统地总结各因素变化带来的影响。本文总结了奥氏体晶粒尺寸、冷却速率、夹杂物成分、夹杂物尺寸的变化对针状铁素体体积分数的影响。得出结论如下:奥氏体晶粒尺寸为100~200μm、冷却速率为5~10℃/s、夹杂物尺寸为1~2μm和(Ti、Mg、Zr)Ox夹杂物均有利于促进针状铁素体形核。  相似文献   

10.
张雄  余伟  王云龙 《钢铁》2021,56(3):130-136
 对于热轧非调质钢棒材,轧后相变组织对最终产品的力学性能有着重要影响。为了准确预测38MnSiVS非调质钢棒材热轧后的组织演变和性能,利用热膨胀与定量金相方法,在Gleeble-3500热模拟机及Dil805淬火变形膨胀仪上分别测定了试验钢动态连续冷却转变(CCT)和动态等温转变(TTT)曲线。研究分析了冷却速率对试验钢相变及珠光体片层间距的影响,基于Esake and Pietrzyk和Zener and Hillert模型,分别建立了铁素体晶粒尺寸dα、珠光体片层间距SP关系式。结合动态等温转变曲线数据和Scheil叠加原理对铁素体体积分数进行了理论计算,为实际热轧生产中的组织性能控制提供理论依据。  相似文献   

11.
热连轧E36船板钢连续冷却相变行为   总被引:1,自引:0,他引:1  
通过热模拟试验机模拟了20 mm E36船板钢(%:0.15C、0.38Si、1.56Mn、0.011P、0.002S、0.04Nb、0.06V、0.02Ti、0.037Als)经1 080℃和830~890℃分别以变形速率1 s-1变形30%的双道次轧制及冷却过程,测得连续冷却转变曲线,并研究终轧温度和轧后冷却速度(5~25℃/s)对该钢相变和组织的影响。结果表明,随着冷却速度的增加,相变开始温度降低,珠光体的体积分数减小,贝氏体的体积分数增大;随着终轧温度的降低,相变开始温度升高;铁素体晶粒随冷却速度的增加和终轧温度的降低而细化。  相似文献   

12.
利用热膨胀试验研究了9Cr钢随冷却速度变化的相变行为,设定奥氏体化温度分别为860和1000℃,利用 OM、SEM、TEM、XRD和室温拉伸对比研究不同热处理温度下9Cr钢的显微组织及力学性能.研究表明:随着冷却速度增加,9 Cr 钢发生铁素体/珠光体相变、贝氏体相变和马氏体相变,其中马氏体相变临界冷速为1.6℃/s;860℃热处理后9Cr钢的显微组织为板条贝氏体/马氏体和少量等轴铁素体,并有4%的残余奥氏体;奥氏体化温度升至1000℃后,奥氏体晶粒尺寸增加,9Cr 钢中铁素体几乎消失,板条特征更加明显,力学性能与860℃热处理后基本相同,均达到 HL级抽油杆钢的要求,说明9Cr钢具有较宽的工艺窗口.  相似文献   

13.
基于C Si Mn Cr Mo系600 MPa级热轧双相钢的组分,设计了不同硅质量分数(0.55%和1.17%)的两种试验钢。采用Gleeble 3500热模拟试验机测定了两种试验钢的连续冷却转变曲线,分析了硅质量分数对试验钢连续冷却过程中组织转变的影响,并研究了硅质量分数对短流程生产中温卷取型热轧双相钢生产工艺的影响。结果表明,相对于w(Si)=1.17%,w(Si)=0.55%使铁素体开始转变温度降低40~50 ℃,明显缩短了铁素体转变的孕育期,并增加了铁素体的体积分数。在CSP线上生产时,低硅钢的终轧温度可控制为820~830 ℃,低的终轧温度使铁素体相变时间增加2.2 s左右,铁素体转变量增加,且后续相变过程中可避免非马氏体组织的出现。因此,低硅钢适合在CSP短流程线上生产中温卷取型热轧双相钢。  相似文献   

14.
选取了现有典型的C-Mn钢相变过程的物理冶金模型,包括5组孕育期模型、7组相变动力学方程模型、5组相变后铁素体晶粒尺寸模型.利用自行开发的组织性能预报系统软件模拟计算了在3组实际冷却工艺条件下各模型的奥氏体转变过程,并对各模型进行了评价.结果表明,对于所设定的成分和工艺条件,适用性较好的孕育期模型是Kwon所提出的模型...  相似文献   

15.
Ti、Zr的复合氧化物可以有效诱导针状铁素体形核,从而细化晶粒。为了研究Ti–Zr处理钢中针状铁素体转变机理,使用25 kg真空感应炉中熔炼试验所需钢种,向低合金钢中添加了质量分数为0.038%钛和0.008%锆。利用高温激光共聚焦显微镜原位观察了奥氏体化温度对针状铁素体转变行为的变化,使用扫描电镜观察了Ti–Zr处理钢种的夹杂物成分和针状铁素体在夹杂物表面形核,使用光学显微镜观察不同奥氏体化温度下的微观组织变化差异。结果表明,随着奥氏体化温度从1250 ℃增加至1400 ℃,奥氏体晶粒尺寸从125.6 μm 增加至279.8 μm,针状铁素体开始转变温度和侧板条铁素体开始转变温度先增加,在1350 ℃条件下达到最大值,后又降低,针状铁素体的体积分数由39.6%增加至83.6%;Ti–Zr处理钢中核心为Zr–Ti–O,外部为Al–Ti–Zr–O的氧化物为核心表面析出MnS的复合氧化物主要集中在1.5~3 μm,可以有效促进针状铁素体形核,贫Mn区和夹杂物与铁素体之间的良好晶格关系为该型夹杂物能够促进针状铁素体形核机理。奥氏体晶粒尺寸的增加导致多边形铁素形核位点的减少和针状铁素体的形核空间的增加,钛锆复合处理形成大量的有效诱发针状铁素体形核的夹杂物,这共同导致了针状铁素体体积分数增加。   相似文献   

16.
江畅  王子波  王杨  陆恒昌  满廷慧  周蕾 《钢铁》2022,57(3):91-96
钢的连续冷却相变曲线(CCT)是组织调控的基本依据,为了优化紧固件用冷作硬化非调钢热轧态的组织和力学性能,采用DIL805A相变仪测定了试验钢在0.1~50℃/s不同冷却速率下的热膨胀曲线,结合金相硬度法确定相变类型,并绘制了试验钢的CCT曲线.结果 表明,试验钢马氏体转变点(Ms)为280℃,在不同冷速范围内均有铁素...  相似文献   

17.
采用热模拟试验研究了含钼双相钢DP600在不同冷却模式、转变温度和冷却速率时的显微组织转变,分析了相变后的马氏体比例和晶粒度级别,根据热模拟结果设计了DP600钢的生产工艺,并探讨了钼元素对双相钢的影响。结果表明,DP600钢在热轧组织转变时,两段式冷却工艺比一段式工艺形成的马氏体细小,且晶粒度提升1级。奥氏体向铁素体转变过程中,存在最佳相变温度平衡点;590 ℃以上减缓DP600钢铁素体+珠光体的过冷转变速率,可以细化晶粒、增加马氏体比例。生产的DP600钢金相显微组织为铁素体+马氏体,马氏体比例为17%,晶粒度为11级;纵向、横向抗拉强度分别为592和620 MPa,伸长率分别为28.5%和26.5%。钼元素可以强烈抑制C- Si- Mn- Cr- Mo系DP600钢的铁素体转变,缩小铁素体转变区。  相似文献   

18.
摘要:通过热模拟实验,研究了冷却工艺参数对Ti微合金化高强钢组织和硬度的影响。结果表明:当终冷温度为700℃时,随着冷却速度的增大,铁素体和珠光体组织得到了显著细化,实验钢硬度增加;随着终冷温度的降低,多边形铁素体晶粒尺寸呈减小趋势,铁素体和珠光体含量逐渐降低,珠光体片层间距逐渐减小,贝氏体含量增加,相变强化和细晶强化共同作用使得实验钢的硬度逐渐增加;钢中存在少量粗大的TiN和Ti4C2S2粒子,冷却速度由5℃/s增大到30℃/s,TiC粒子的析出数量明显增加,平均尺寸由8.1nm减小到6.7nm;终冷温度由700℃降到600℃,第二相粒子TiC的析出数量逐渐减少,平均析出粒子尺寸由6.7nm减小到5.9nm。研究结果为Ti微合金化高强钢控制冷却工艺的制定奠定了理论基础。  相似文献   

19.
基于过冷奥氏体动态相变的思想,通过两道次压缩变形结合控制冷却的热模拟轧制工艺,获得不同贝氏体含量及形态的细晶铁素体贝氏体双相钢。通过显微组织观察及力学性能测试,考察了第二相贝氏体特征对双相钢室温拉伸变形行为的影响。研究结果表明,形变后快速冷却可获得无碳板条状贝氏体,较慢的冷速或在贝氏体转变区保温处理可获得粒状贝氏体。贝氏体体积分数大于20%左右的细晶铁素体/贝氏体双相钢具有低的屈服强度,高的抗拉强度,高的伸长率,低屈强比以及连续屈服特性。屈服强度既与铁素体晶粒尺寸相关,也与贝氏体形态和数量相关。板条贝氏体引起的屈服强度提高大于粒状贝氏体,粒状贝氏体具有比板条贝氏体更好的塑性。  相似文献   

20.
The continuous cooling transformation behavior of hot rolled TRIP 600 steel produced by CSP process was investigated by means of Thermecmastor- Z thermal simulation testing machine, Formastor- F full automatic transformation instrument, OM, SEM and microhardness tester. The dynamic and static continuous cooling transformation (CCT) curves of the experimental steel were obtained. And the effect of deformation on phase transformation behavior was discussed. The results show that the temperature of austenite to ferrite and the volume fraction of ferrite gradually decrease with the increase of cooling rate. The transformation temperature range of the pro- eutectoid ferrite is 480-716??. Meanwhile, the transformation temperature range of pearlite is 519-647??, and the volume fraction of pearlite  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号