首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
采用真空热压烧结技术制备了Ti/Al_2O_3复合材料,在烧结温度1420℃,保温时间60 min,升温速率10℃/min(0~1200℃)和5℃/min(1200~1420℃)的烧结工艺下,研究了掺加碳纤维对Ti/Al_2O_3复合材料力学性能的影响。实验结果表明:碳纤维的掺入优化了复合材料的断裂模式,对Ti/Al_2O_3复合材料的力学性能有较为明显的影响。当掺入碳纤维体积分数为1%时,Ti/Al_2O_3复合材料的力学性能达到最佳,相对密度为97.62%,显微硬度为(16.6±2.32)GPa,弯曲强度为(381±11.25)MPa,断裂韧性为(7.2±1.19)MPa·m~(1/2)。  相似文献   

2.
主要利用微弧氧化方法在Ti-6Al-4V合金表面制备Ti O_2/Al_2O_3复合涂层,并揭示了O~(2-)、Al O_2~-,和Ti~(4+)在涂层生长过程中的作用机制。在高温高电压条件下,Ti-6Al-4V合金表面首先生成Ti O_2、Al_2O_3和Al_2Ti O_5,不断放电引起的高热能导致Al_2Ti O_5进一步分解成Ti O_2和Al_2O_3,且XRD分析表明涂层的物相组成主要是A-Ti O_2、R-Ti O_2和α-Al_2O_3。耐磨性测试结果表明,与基体相比Ti O_2/Al_2O_3复合涂层的显微硬度HV提高到11000 MPa,且耐磨性显著提高,磨损量降低了9.5倍。  相似文献   

3.
以Ti3SiC2(10%~50%,体积分数)和HAp粉为原料,采用等离子体放电烧结(SPS)方法,在外加应力60 MPa,烧结温度1200℃条件下,制备了Ti3SiC2/HAp陶瓷复合材料.研究了Ti3SiC2含量对复合材料的硬度、抗弯强度、断裂韧性等力学性能的影响.实验结果表明,随Ti3SiC2含量的变化,复合材料的强度和韧性均得到了提高和改善.分析认为,Ti3SiC2材料的微观结构特征和增韧机制起到了重要作用.  相似文献   

4.
利用Al_3Ti/Ti N纳米复合粉体在1280℃/150 MPa/1 h热等静压条件下,制备出Al_2O_3/Ti_4Al N_3复合材料。利用XRD、SEM和TEM研究复合材料的形貌及成分。研究表明,复合材料主要由片层结构的Ti_4Al N_3基体和Al_2O_3颗粒增强相组成。Ti_4Al N_3基体的平均晶粒尺寸为7μm;Al_2O_3颗粒的弥散分布,形状不规则,粒度在1~3μm,体积分数约为27%。Al_2O_3/Ti_4Al N_3复合材料的强化机制为细晶强化和第二相粒子强化。Al_2O_3/Ti_4Al N_3复合材料与单相的Ti_4Al N_3材料相比,显微硬度从2.5GPa提高到6.7 GPa,室温下最大抗压缩强度从450 MPa提高到1 800 MPa,最大压缩应变由4%提高到6.2%。  相似文献   

5.
通过对Al-TiO_2-SiO_2体系混合粉末固-液原位合成制备出了(Al_2O_3+Al_3Ti)_P/Al复合材料.利用X射线衍射仪、扫描电镜等方法观察分析了其物相和显微组织形貌.结果表明:原位反应制备的(Al_2O_3+Al_3Ti)_P/Al复合材料,金属间化合物增强相Al_3Ti均匀分布于基体,陶瓷相Al_2O_3颗粒非常细小,弥散分布于基体中,使材料的硬度等性能得到提高.  相似文献   

6.
Al_2O_3颗粒对LiTaO_3压电陶瓷增强增韧机制的探讨   总被引:1,自引:1,他引:0  
采用氮气保护热压烧结工艺制备Al_2O_3/LiTaO_3(简称ALT)陶瓷基复合材料,研究了Al_2O_3颗粒对LiTaO_3压电陶瓷增强增韧的机制.结果表明,ALT陶瓷复合材料的相对密度比烧结纯LiTaO_3陶瓷的高得多,且其各项力学性能均有明显的提高;Al_2O_3的加入起到烧结助剂的作用;Al_2O_3第二相加入后对LiTaO_3压电陶瓷起到弥散强化作用,其增韧机理为ALT复合材料中残余应力场和裂纹偏转增韧.  相似文献   

7.
采用粉末冶金原位合成法制备Al_3Ti、Al_3Zr金属间化合物增强铝基复合材料。采用X射线衍射、扫描电镜、光学显微镜、硬度测试和抗拉强度测试,研究烧结温度对复合材料显微组织和力学性能的影响。结果表明,在铝基体中生成了金属间化合物Al_3Ti和Al_3Zr增强相;随烧结温度从700℃上升到900℃,复合材料的硬度(HV)从85.7提高到118.1;经800℃烧结制备的复合材料表现出了较好的抗拉强度(140.71MPa)和屈服强度(40.5MPa)。  相似文献   

8.
以Mo、Al、Si和Mo O_34种粉末为原料,通过燃烧合成和真空热压烧结工艺原位制备了(Si_(1-x)Al_x)_2/Al_2O_3复合材料,分析了其燃烧模式、产物相结构、微观组织和力学性能。结果表明:添加Al之后坯体的燃烧合成反应更加剧烈,燃烧模式由螺旋模式转入混沌模式。随着合金化Al含量的增加,基体相结构由C11_b型Mo Si_2转变为C40型Mo(Si,Al)_2,并且在所有复合材料中都可以鉴别出Al_2O_3衍射峰,表明通过燃烧合成技术原位制备了Mo(Si_(1-x)Al_x)_2/Al_2O_3复合材料。复合材料的断裂韧性和抗弯强度最高分别达到4.25 MPa·m~(1/2)和346 MPa,比纯Mo Si_2提高了39%和60%。复合材料的强韧化机制主要有Al合金化强韧化、Al_2O_3第二相颗粒弥散强韧化、玻璃相的消除以及断裂方式的转变。  相似文献   

9.
通过转喷微注法制备Al_2O_3/7075复合材料,自行设计了转喷微注装置,利用氩气流将增强体颗粒注入熔融金属液,解决了增强体颗粒不易进入金属内部的问题。试验选用不同含量(质量分数分别为0、2%、4%和6%)的亚微米Al_2O_(3p)作为增强相制备Al_2O_3/7075复合材料,并对其组织性能进行观察与测试。结果表明,这种工艺制备成的Al_2O_3/7075复合材料的晶粒组织较不含Al_2O_3的基体合金小,当Al_2O_3的质量分数为4%时,Al_2O_3/7075复合材料的拉伸强度达到最高值182 MPa,较基体铝合金的拉伸强度提高了20%,硬度从HB76提升到HB113,提高了48%;如果进一步增加增强相含量,则复合材料拉伸性能开始出现下降的趋势。  相似文献   

10.
采用机械合金化与放电等离子烧结的方法制备了不同Al_2O_3体积分数的Cu-Al_2O_3复合材料。研究了Al_2O_3颗粒含量对Cu-Al_2O_3复合材料组织与性能的影响,特别是对导电性能的影响,比较了孔隙、第二相颗粒等不同因素对导电性能的影响。结果表明:随着Al_2O_3体积分数的增加,复合材料颗粒发生团聚,孔隙数量逐渐增多,材料的致密化程度不断下降;基体中弥散分布的Al_2O_3纳米颗粒可以显著提升复合材料的抗拉强度,抗拉强度最大达到596 MPa,伸长率最大可达3.65%。但Al_2O_3纳米颗粒的加入会导致复合材料导电率的下降,球磨过程中引入的杂质铁对复合材料导电性能影响最大,其次是纳米晶晶界、纳米Al_2O_3颗粒和孔隙,位错对导电性能的影响最小。  相似文献   

11.
利用粉末冶金方法制备了Al2Ti3V2ZrB/2024Al复合材料,研究了球磨工艺和烧结温度对复合材料微观组织和硬度的影响。结果表明,球磨时过高的球磨速度或过长的球磨时间均会造成Al2Ti3V2ZrB颗粒的团聚,影响复合材料的组织均匀性。在球磨速度为150r/min下球磨5h,Al2Ti3V2ZrB颗粒在2024Al基体中的分布最均匀,复合材料的硬度最高。当烧结温度低于510℃时,Al2Ti3V2ZrB颗粒在2024Al基体中分布比较均匀,复合材料密度和硬度随烧结温度升高逐渐增加;超过510℃后Al2Ti3V2ZrB颗粒开始团聚,复合材料密度和硬度下降,在510℃制备的复合材料具有最高的硬度。  相似文献   

12.
高温反应烧结制备Al2O3-TiC/Al原位复合材料   总被引:5,自引:1,他引:4  
以AlTiO2反应体系为基础,添加适量石墨粉,压制后在不同温度下进行反应烧结,从而确定了获得反应完全的Al2O3TiC/Al铝基复合材料的烧结工艺参数,并对该复合材料的组织性能及反应机理进行了分析讨论。结果表明:碳的加入可完全抑制条状和大块状Al3Ti相的形成;AlTiO2C体系在1200℃反应烧结后,可制得硬度较高的Al2O3TiC/Al原位复合材料,其显微组织中Al2O3和TiC颗粒尺寸小于2μm。  相似文献   

13.
采用真空热压烧结方法制备Al2O3/Ti(C,N)-Ni-Ti陶瓷基复合材料,采用X射线衍射与扫描电镜分析材料的物相组成和显微结构,研究烧结工艺对材料物相组成、显微结构和力学性能的影响。结果表明:Ni和Ti的添加显著提高复合材料的强度和韧性;温度小于1 600℃时,复合材料的力学性能随热压温度的升高而升高;温度高于1 600℃时,温度升高及保温时间延长不仅会导致Al2O3晶粒的异常长大和Ti(C,N)的分解,而且会使Ni发生聚集现象,复合材料的力学性能下降;当烧结温度为1 600℃、保温时间为30 min时,制备的Al2O3/Ti(C,N)-Ni-Ti陶瓷复合材料的力学性能最佳,其相对密度达到99.4%,抗弯强度为820 MPa,断裂韧性达到9.3 MPa.m1/2。  相似文献   

14.
基于金属Al在高温下氧化形成氧化铝并伴随体积膨胀的效应,利用该体积膨胀抵消烧结致密化导致的体积收缩,设计了Al、Al2O3为主要组成、少量的Y2O3和SiO2为烧结助剂的填充相组分,以95氧化铝方形小坩埚模拟陶瓷宏观裂纹,进行了陶瓷宏观裂纹的修复研究。通过比较Al含量、烧成温度和升温制度对填充组分膨胀量和修复界面微观结构的影响,证实氧化物陶瓷宏观裂纹可通过选择适宜的Al/Al2O,填充组分实现修复。  相似文献   

15.
以Ti、Al、TiO2为起始原料,以Er2O3为掺杂剂,原位热压合成了Er掺杂Al2O3/TiAl复合材料。通过XRD、SEM分析及力学性能测试,研究了不同Er2O3引入量对合成Al2O3/TiAl复合材料微观结构和力学性能的影响。结果表明:复合材料主要由TiAl、Ti3 Al、Al2 O3相和少量Al10 Er6 O24相组成,含Er相主要分布在基体相晶界处;掺杂0.01 mol Er2 O3制得的复合材料,经1250℃保温2 h真空热压烧结后表观断裂韧性达到最大值(10.41 MPa.m1/2),经1300℃保温2 h真空热压烧结后弯曲强度达到最大值(456.06 MPa);当Er2O3掺杂量增加到0.02 mol时,复合材料的弯曲强度和表观断裂韧性均呈减小趋势。微观结构分析表明,掺杂0.01 mol Er2O3的复合材料断口毛糙,颗粒尺寸变小,增强相分布较均匀,表明适量的Er2O3掺杂可细化复合材料晶粒尺寸,提高增强颗粒分布均匀度,起到增强增韧的效果。  相似文献   

16.
采用一种新颖的离心成型法制备了无宏观界面的Al2O3/Ni功能梯度材料, 并研究了料浆调制工艺、离心成型制备机理和梯度材料的力学性能。结果表明, 配制料浆时,粘结剂(聚乙二醇)含量为2 mass%、固相含量为63vol.%、球磨时间为36h,可得到流动性良好的料浆,经离心成型(40min,转速3000 r/min)得到无宏观界面的坯体,在1400 C真空烧结2 h,最终得到致密、组元宏观连续过渡的Al2O3/Ni梯度材料。通过调整固相含量和粘结剂含量,可调控Al2O3/Ni复合材料的成分梯度。  相似文献   

17.
高能球磨制备Al3Ti/Al块体纳米晶复合材料   总被引:3,自引:1,他引:3  
通过对Al Ti系和Al TiO2 系进行高能球磨和压制烧结制备了固态原位反应生成的纳米晶块体Al3Ti/Al复合材料。研究表明 :Al Ti合金系高能球磨后 ,各组元晶粒得到细化 ,并且Ti在Al中发生了强制超饱和固溶 ,烧结时原位反应形成纳米晶Al3Ti/Al复合材料 ;而Al TiO2 反应体系高能球磨仅发生组分晶粒细化 ,烧结时TiO2 部分还原并和Al原位反应生成纳米晶 (Ti2 O3 Al3Ti) /Al复合材料。  相似文献   

18.
采用原位热压工艺,在Ti-Al-TiO2-Nb2O5体系中加入Cr2O3原位合成Al2O3/TiAl复合材料.借助X射线衍射分析、SEM分析及力学性能分析,研究了Nb-Cr掺杂复合强化Al2O3/TiAl复合材料的反应过程、微观结构及力学性能.结果表明Nb-Cr掺杂原位合成Al2O3/TiAl复合材料能够细化晶粒并通过微合金化增强增韧TiAl复合材料.  相似文献   

19.
Ti-Al-TiO_2体系的热力学分析及合成反应过程研究   总被引:1,自引:0,他引:1  
以Ti、Al和Ti02混合粉的原位反应制备Al203颗粒增强TiAl基复合材料.利用热力学机理分析了制备该种材料的可行性;用扫描电镜观察了合成产物的组织形态;借助差热变化曲线,对Ti-Al-Ti02体系的反应过程进行了初步研究.结果表明,Ti-Al-Ti02体系的反应能够原位生成Al203颗粒增强的TiAl基复合材料;Al203颗粒分布在基体晶界处,随其含量增大,基体晶粒逐渐细化;铝熔化后首先开始了TiAl3的生成反应,由于Ti02的稀释作用,使它的放热峰与Ti-Al体系的主放热峰相比有所滞后,紧接着发生了Al-Ti02的还原反应,由于其激活能低而速度较快,因此较早完成;若Al-Ti02的还原反应未进行彻底,部分TiAl3将分解以提供铝液;最后发生了TiAl3向TiAl和TiAl相转变的过程.  相似文献   

20.
In-situ Al2O3/TiAl composites were fabricated by pressure-assisted exothermic dispersion (PAXD) method from elemental powder mixtures of Ti, Al, TiO2, and Nb2O5. The microstructures and mechanical properties of the as-sintered composites are investigated. The results show that the as-sintered products consist of γ-TiAl, α2-Ti3Al, Al2O3, and NbAl3 phases. Microstructure analysis indicates that Al2O3 particles tend to disperse on the grain boundaries. Application of a moderate pressure of 35 MPa at 1200℃ yields Al2O3/TiAl composites with fine Al2O3 reinforcement and a discontinuous network linking by Al2O3 particles. The aluminide component has a fine submicron γ +α2 lamellar microstructure. With increasing Nb2O5 content, Al2O3 particles are dispersed uniformly in the matrix. The hardness of the composites increases gradually, and the bending strength and fracture toughness of the composites reach to the maximum value, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号