首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activation of the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) pathway is required for ligand-dependent regulation of numerous cellular functions by receptor tyrosine kinases. We have shown previously that although many receptor tyrosine kinase ligands are mitogens for keratinocytes, cell migration and induction of the 92-kilodalton gelatinase/matrix metalloproteinase (MMP)-9 are selectively regulated by the epidermal growth factor and scatter factor/hepatocyte growth factor receptors. In this report we present evidence of an underlying mechanism to account for these observed differences in receptor tyrosine kinase-mediated response. Ligands that are mitogenic, but do not induce MMP-9 or colony dispersion, transiently activate the p42/p44 ERK/MAP kinases. In contrast, ligands that stimulate MMP-9 induction and colony dispersion induced sustained activation of these kinases. The functional significance of sustained MAPK activation was demonstrated by inhibition of the MAP kinase kinase MEK1. Disruption of the prolonged signal by addition of the MEK1 inhibitor PD 98059 up to 4 h after growth factor stimulation substantially impaired ligand-dependent colony dispersion and MMP-9 induction. These findings support the conclusion that duration of MAPK activation is an important determinant for certain growth factor-mediated functions in keratinocytes.  相似文献   

2.
Mutated RAS oncoproteins and epidermal growth factor (EGF) are thought to contribute to the proliferative, invasive and metastatic properties of transformed cells. In the present study, we investigated the role of EGF in two H-ras transfected clones and compared it to that in the parental cell line, HaCaT and primary cultured keratinocytes. Our findings show that the motility on type I collagen, measured by the migration index, was similar for both the HaCaT cell line and normal human keratinocytes, whereas it was higher for the HaCaT-ras clones. These results suggest an involvement of the ras oncogene in the stimulation of cell migration. EGF in cell pretreatment or during the migration assay also caused an increase in migration of all the cells, but preserved the difference between HaCaT and HaCaT-ras. However, no significant difference in EGF-R expression was detected between normal cultured keratinocytes, HaCaT and HaCaT-ras cell lines with or without EGF pretreatment. Moreover, when the cells were stimulated with EGF, the MMP-9 activity was greatly increased in a dose-dependent manner in all the cells, and EGF stimulation particularly highlights the increased amount of MMP-9 in HaCaT-ras cells compared to HaCaT cells. In conclusion, EGF is able to enhance motility and to up-regulate MMP-9 activity in all cells, but with a higher impact in HaCaT-ras cells without an overexpression of EGF-R. As EGF acts in synergy with the H-ras mutation, they could be implicated in the local invasion by the HaCaT-ras clones.  相似文献   

3.
T cell-dependent humoral immune responses are initiated by the activation of naive B cells in the T cell areas of the secondary lymphoid tissues. This primary B cell activation leads to migration of germinal center (GC) cell precursors into B cell follicles where they engage follicular dendritic cells (FDC) and T cells, and differentiate into memory B cells or plasma cells. Both B cell migration and interaction with FDC critically depend on integrin-mediated adhesion. To date, the physiological regulators of this adhesion were unkown. In the present report, we have identified the c-met-encoded receptor tyrosine kinase and its ligand, the growth and motility factor hepatocyte growth factor/scatter factor (HGF/SF), as a novel paracrine signaling pathway regulating B cell adhesion. We observed that c-Met is predominantly expressed on CD38(+)CD77(+) tonsillar B cells localized in the dark zone of the GC (centroblasts). On tonsil B cells, ligation of CD40 by CD40-ligand, induces a transient strong upregulation of expression of the c-Met tyrosine kinase. Stimulation of c-Met with HGF/SF leads to receptor phosphorylation and, in addition, to enhanced integrin-mediated adhesion of B cells to both VCAM-1 and fibronectin. Importantly, the c-Met ligand HGF/SF is produced at high levels by tonsillar stromal cells thus providing signals for the regulation of adhesion and migration within the lymphoid microenvironment.  相似文献   

4.
T cell dependent humoral immune responses are initiated by the activation of naive B cells in the T cell areas of the secondary lymphoid tissues. This primary B cell activation leads to migration of germinal center (GC) cell precursors into B cell follicles where they engage follicular dendritic cells (FDC) and T cells, and differentiate into memory B cells or plasma cells. Both B cell homing to the GC and interaction with FDC critically depend on integrin-mediated adhesion. We have recently indentified the c-met-encoded receptor tyrosine kinase and its ligand, the growth and motility factor hepatocyte growth factor/scatter factor (HGF/SF), as a novel paracrine signalling pathway regulating B cell adhesion (van der Voort et al., 1997, J. Exp. Med. 185, 2121-2131). The c-Met protein is expressed on B cells localized in the dark zone of the GC (centroblasts) and is induced by CD40 plus BCR ligation. Stimulation of c-Met with HGF/SF, which is produced at high levels by tonsillar stromal cells and FDC, leads to receptor phosphorylation and to enhanced integrin-mediated adhesion of B cells to both VCAM-1 and fibronectin. Interestingly, these responses to HGF/SF are promoted by heparan-sulfate proteoglycan forms of CD44 (CD44-HS). Like c-Met, CD44-HS is induced on B cells by CD40 ligation. It efficiently binds HGF/SF and strongly promotes signalling through c-Met. We conclude that integrin regulation during antigen specific B cell differentiation involves cross-talk between the HGF/SF-c-Met pathway and CD44-HS.  相似文献   

5.
All receptor tyrosine kinases share a common intracellular signaling machinery, including ras activation, whereas cellular responses vary from mitogenesis to cell differentiation. To investigate the structural basis for receptor tyrosine kinase action for nerve growth factor, the juxtamembrane region of TrkA was transferred to a corresponding region of the epidermal growth factor (EGF) receptor. The resulting chimeric receptor contains an additional Shc site, Tyr490, in the juxtamembrane region. In transfected PC12 cell lines, neuronal differentiation was observed with EGF treatment, as evidenced by increased neurite extension. The action of the chimeric receptor was correlated with prolonged activation of MAP kinases and a 3-4-fold increase in phosphatidylinositol 3-kinase activity. The effect of the juxtamembrane chimera was dependent upon the Shc site at Tyr490, because expression of a chimeric receptor containing a Y490F mutation resulted in a complete loss of neuritogenesis by EGF treatment. These findings indicate that the juxtamembrane region of the TrkA receptor serves as a key functional domain that can confer a dominant effect upon neuronal differentiation.  相似文献   

6.
We presented earlier a 2-dimensional cell-motility assay using a highly metastatic variant (L-10) of human rectal-adenocarcinoma cell line RCM-1 as a motility model of tumor cells of epithelial origin. In this model, L-10 cells moved as coherent cell sheets when stimulated with 12-O-tetradecanoylphorbol-13-acetate (TPA), and we called this type of movement "cohort migration". Electron- and immunoelectron-microscope study of the migrating cell sheets demonstrated localized release from cell-cell adhesion only at the lower portion of the cells with loss of E-cadherin immunoreactivity, and this change was associated with increased tyrosine phosphorylation of the E-cadherin-catenin complex, including beta-catenin. In the present study, to obtain evidence to support the relevance of our model to carcinoma-cell movement in vivo, we sought a naturally occurring motogenic factor(s) able to induce this cohort migration. Among the factors examined, hepatocyte growth factor/scatter factor (HGF/SF) clearly induced cohort migration of L-10 cells. Additionally, not only L-10 but several other human colorectal-carcinoma cell lines showed this type of migration in response to HGF/SF, while yet others showed scattering-type motility. In this HGF/SF-induced migration, localized release from cell-cell adhesion was induced only at the lower portion of the cells, allowing them to extend leading lamellae, whereas close cell-cell contacts remained at the upper portion of the cells, as seen in TPA-induced cohort migration. Scattering-type cell lines tended to express more c-Met (receptor for HGF/SF) mRNA than the cell lines that showed cohort-type migration. LoVo, one of the scattering-type cell lines, expressed more c-Met protein and less E-cadherin than L-10, which showed cohort-type migration. HGF/SF treatment of LoVo reduced the amount of alpha-catenin complexed with E-cadherin more markedly than in L-10, but in both cell lines this reduction was not accompanied by increased tyrosine phosphorylation of beta-catenin, suggesting the presence of a mechanism other than phosphorylation for release from cell-cell adhesion during cell motility.  相似文献   

7.
8.
Normal as well as neoplastic cells traverse extracellular matrix barriers by mobilizing proteolytic enzymes in response to epidermal growth factor (EGF)-EGF receptor (EGFR) or hepatocyte growth factor/scatter factor (SF)-c-Met interactions. The plasminogen activator-plasminogen axis has been proposed to play a key role during cell invasion, but the normal development of plasminogen activator- as well as that of plasminogen-deficient mice supports the existence of alternate proteolytic systems that permit cells to traverse extracellular matrix barriers. To characterize the role that matrix-degrading proteinases play in EGF- or SF-stimulated invasion, a human squamous carcinoma cell line (UM-SCC-1) was triggered atop the matrices of type I collagen or human dermal explants in a three-dimensional culture system. During EGF- or SF-induced invasion, UM-SCC-1 cells expressed urokinase-type plasminogen activator (uPA) and uPA receptor as well as the matrix metalloproteinases (MMPs), membrane-type MMP-1, collagenase 1, stromelysin 1, and gelatinase B. Despite the presence of a positive correlation between uPA receptor-uPA expression and growth factor-stimulated invasion, UM-SCC-1 invasion was not affected by inhibitors directed against the plasminogen activator-plasminogen axis. In contrast, both recombinant and synthetic MMP inhibitors completely suppressed invasion by either EGF- or SF-stimulated cells without affecting either proteinase expression or cell motility across collagen-coated surfaces. These data demonstrate that MMPs, but not the plasminogen activator-plasmin system, can directly regulate the ability of either EGF- or SF-stimulated tumor cells to invade interstitial matrix barriers.  相似文献   

9.
10.
Overexpression and amplification of hepatocyte growth factor (HGF) receptor (Met) have been detected in many types of human cancers, suggesting a critical role for Met in growth and development of malignant cells. However, the molecular mechanism by which Met contributes to tumorigenesis is not well known. The tyrosine kinase c-Src has been implicated as a modulator of cell proliferation, spreading, and migration; these functions are also regulated by Met. To explore whether c-Src kinase is involved in HGF-induced cell growth, a mouse mammary carcinoma cell line (SP1) that co-expresses HGF and Met and a nonmalignant epithelial cell line (Mv1Lu) that expresses Met but not HGF were used. In this study, we have shown that c-Src kinase activity is constitutively elevated in SP1 cells and is induced in response to HGF in Mv1Lu cells. In addition, c-Src kinase associates with Met following stimulation with HGF. The enhanced activity of c-Src kinase also correlates with its ability to associate with Met. Expression of a dominant negative double mutant of c-Src (SRC-RF), lacking both kinase activity (K295R) and a regulatory tyrosine residue (Y527F), in SP1 cells significantly reduced c-Src kinase activity and strongly blocked HGF-induced motility and colony growth in soft agar. In contrast, expression of the dominant negative c-Src mutant had no effect on HGF-induced cell proliferation on plastic. Taken together, our data strongly suggest that HGF-induced association of c-Src with Met and c-Src activation play a critical role in HGF-induced cell motility and anchorage-independent growth of mammary carcinomas and further support the notion that the presence of paracrine and autocrine HGF loops contributes significantly to the transformed phenotype of carcinoma cells.  相似文献   

11.
Intracellular tyrosine kinases link the G protein-coupled m1 muscarinic acetylcholine receptor (mAChR) to multiple cellular responses. However, the mechanisms by which m1 mAChRs stimulate tyrosine kinase activity and the identity of the kinases within particular signaling pathways remain largely unknown. We show that the epidermal growth factor receptor (EGFR), a single transmembrane receptor tyrosine kinase, becomes catalytically active and dimerized through an m1 mAChR-regulated pathway that requires protein kinase C, but is independent of EGF. Finally, we demonstrate that transactivation of the EGFR plays a major role in a pathway linking m1 mAChRs to modulation of the Kv1.2 potassium channel. These results demonstrate a ligand-independent mechanism of EGFR transactivation by m1 mAChRs and reveal a novel role for these growth factor receptors in the regulation of ion channels by G protein-coupled receptors.  相似文献   

12.
The 9E3/CEF4 gene codes for a chemokine that is highly homologous to human interleukin-8 and melanoma growth-stimulating activity/groalpha. These chemokines belong to a family of molecular mediators that are importantly involved in inflammation, wound healing, tumor development, and viral entry into cells. On the chorioallantoic membrane the 9E3 protein is chemotactic for monocyte/macrophages and lymphocytes and is angiogenic. In cultured chicken embryo fibroblasts, which have many of the properties of wound fibroblasts, the gene is stimulated by a variety of agents including oncogenes, growth factors, phorbol esters, and thrombin. The strong stimulation of 9E3 by thrombin in culture correlates well with the observation that in young chicks this gene is stimulated to very high levels in fibroblasts upon wounding and remains high throughout wound repair. Activation of 9E3 by thrombin: (i) occurs very rapidly, one minute exposure to thrombin is sufficient to initiate the signals necessary for gene activation; (ii) is independent of mitogenesis; (iii) operates through the proteolytically activated receptor for thrombin; (iv) is mediated by tyrosine kinases, including c-src and the epidermal growth factor (EGF) receptor, rather than Ser/Thr kinases such as protein kinase C and protein kinase A. Inhibition of either c-src or the EGF receptor tyrosine kinase inhibits the stimulation of 9E3 by thrombin. We show here for the first time that activation of the EGF receptor through a cell-surface receptor that does not have tyrosine kinase activity can lead to expression of an immediate early response gene which encodes for a secreted protein, a chemokine. This rapidly activated tyrosine kinase pathway may be a general stress response by which in vivo a localized cell population reacts to emergency situations such as viral infection, wounding, or tumor growth.  相似文献   

13.
The oncogene Tpr-Met is a constitutively active form of the hepatocyte growth factor/scatter factor (HGF/SF) receptor Met. It comprises the intracellular moiety of Met linked to the dimerization domain of the nuclear envelope protein Tpr, thus functioning as a constitutively activated Met. HGF/SF is responsible for various biological processes including angiogenesis and wound healing, in which secreted serine protease urokinase-type plasminogen activator (uPA) is implicated. The action of HGF/SF on cells is mediated by the autophosphorylation of Met on two carboxyterminal tyrosine residues, Y1349VHVNATVY1356VNV. The two tyrosine residues provide docking sites for various effector molecules, suggesting that multiple signaling pathways are activated to exert biological effects of HGF/SF [Ponzetto et al., Cell (1994) 77: 261]. We found that Tpr-Met efficiently activates the uPA gene via a SOS/Ras/extracellular signal regulated kinase (ERK)-dependent signaling pathway. Mutation of Y1356, which abrogates GRB2 binding, reduced the induction to half of the control level, while mutation of Y1349 showed little effect on uPA induction, suggesting an important but partly replaceable role for GRB2 in Met-dependent uPA gene induction. Mutation of both Y1349VHV and Y1356VNV into optimal PI 3-kinase sites resulted in a residual induction of about one quarter of the control level, suggesting a potential role for PI 3-kinase. Dose-response analysis of the Tpr-Met showed a biphasic curve. These results suggest that the interplay among different signaling molecules on the receptor is important for full induction of the pathway leading to the activation of the uPA gene.  相似文献   

14.
Hepatocyte growth factor/scatter factor (HGF/SF) is a pleiotropic effector of cells expressing the Met tyrosine kinase receptor. C127 is a non-tumorigenic mouse cell line which expresses negligible levels of HGF/SF and Met proteins. In the present report we have generated C127 cells which overexpress HGF/SF and/or Met proteins, and have analysed the effect of HGF/SF-Met signaling in these cells. We show that this signaling pathway stimulates the growth and invasiveness of C127 cells in vitro and that cells overexpressing both HGF/SF and Met proteins (but neither alone) are phenotypically transformed and highly tumorigenic and metastatic in vivo. Our data unequivocally demonstrates the autocrine dependency of HGF/SF-Met-induced transformation and metastasis in this system and supports the theory that the inappropriate expression of HGF/SF and Met proteins could play a role in the development and spread of human tumors. In addition, this system may be useful for identifying metastasis-associated genes that are activated by HGF/SF-Met signaling.  相似文献   

15.
Hepatocyte growth factor (HGF) is a heterodimeric molecule composed of the alpha-chain containing the N-terminal hairpin domain, four kringle domains, and the serine protease-like beta-chain. We prepared HGF/NK4 and HGF/beta from the entire HGF after single-cut digestion with elastase. HGF/NK4 contains the N-terminal hairpin and four kringle domains, while HGF/beta is composed of the C-terminal 16 amino acids of the alpha-chain and the entire beta-chain, linked by a disulfide bridge. HGF/NK4 competitively inhibited the binding of 125I-HGF to the receptor, and affinity cross-linking analysis indicated that HGF/NK4 alone can bind to the c-Met receptor. In contrast, HGF/beta alone did not competitively inhibit the binding of 125I-HGF to the receptor and did not bind to the c-Met/HGF receptor. Scatchard analysis and affinity cross-linking experiments indicated that HGF/beta specifically binds to c-Met in the presence of HGF/NK4 but not HGF/NK2. Neither HGF/NK4 nor HGF/beta alone induced mitogenic, motogenic (cell scattering), and morphogenic (induction of branching tubulogenesis) responses; however, HGF/beta did induce these biological responses in the presence of HGF/NK4. Consistent with these results, although neither HGF/NK4 alone nor HGF/beta alone induced tyrosine phosphorylation of the c-Met/HGF receptor, HGF/beta induced tyrosine phosphorylation of the receptor when c-Met/HGF receptor was occupied by HGF/NK4. These results indicate that HGF/beta binds to the c-Met/HGF receptor that is occupied by HGF/NK4 and induces receptor tyrosine phosphorylation and the subsequent biological activities of HGF. We propose that there exists a unique cooperative interaction between alpha- and beta-chains, this interaction leading to beta-chain-dependent receptor tyrosine phosphorylation and subsequent biological responses.  相似文献   

16.
The feline sarcoma virus oncogene v-fms has significantly contributed to the dissection of peptide growth factor action since it encodes the transmembrane tyrosine kinase gp140v-fms, a transforming version of colony-stimulating factor 1 receptor, a member of the growth factor receptor tyrosine kinase family. In this study, the functional significance of structural differences between distinct tyrosine kinase types, in particular between cellular receptors and viral transforming proteins of distinct structural types, has been further investigated, and their functional compatibility has been addressed. For this purpose, major functional domains of three structurally distinct tyrosine kinases were combined into two chimeric receptors. The cytoplasmic gp140v-fms kinase domain and the kinase domain of Rous sarcoma virus pp60v-src were each fused to the extracellular ligand-binding domain of the epidermal growth factor (EGF) receptor to create chimeras EFR and ESR, respectively, which were studied upon stable expression in NIH 3T3 fibroblasts. Both chimeras were faithfully synthesized and routed to the cell surface, where they displayed EGF-specific, low-affinity ligand-binding domains in contrast to the high- and low-affinity EGF-binding sites of normal EGF receptors. While the EFR kinase was EGF controlled for autophosphorylation and substrate phosphorylation in vitro, in vivo, and in digitonin-treated cells, the ESR kinase was not responsive to EGF. While ESR appeared to recycle to the cell surface upon endocytosis, EGF induced efficient EFR internalization and degradation, and phorbol esters stimulated protein kinase C-mediated downmodulation of EFR. Despite its ligand-inducible kinase activity, EFR was partly EGF independent in mediating mitogenesis and cell transformation, while ESR appeared biologically inactive.  相似文献   

17.
Invasive proliferation is a critical biological characteristic of gliomas. We evaluated the activities of hepatocyte growth factor (HGF) on proliferation and motility of glioma cells, comparing them with the effects of other growth factors (EGF, bFGF, PDGF-BB, TGF-beta 1). Seven primary culture lines all expressed c-met and HGF mRNA, and secreted HGF. HGF stimulated 3H-thymidine uptake of every glioma cell line (30 to 70% upregulation). Boyden chamber assay and scattering assay revealed that HGF promoted cell motility with chemokinetic and strong chemotactic activities. Concentric circle assay showed that HGF promoted two-dimensional expansion (proliferation and motility) most strongly among the growth factors studied. Further, we analyzed 23 paraffin-embedded sections of surgically resected gliomas (7 grade II, 8 grade III, and 8 grade IV) by immunohistochemistry. Expression of HGF and Met increased with malignant progression of gliomas, suggesting that gliomas stimulated their invasive proliferation by autocrine HGF production. Neurons and vasculature were HGF-positive, and Met-positive glioma cells gathered around them. The data indicate that neurons and vasculature, which are the main tracks of glioma invasion, augment chemotactic invasion and proliferation of gliomas by paracrine HGF secretion. Clearly HGF plays a critical role in invasive proliferation of glioma cells and it is therefore a candidate target of therapeutic intervention.  相似文献   

18.
BACKGROUND: The growth and progression of prostate cancer depends on the stromal-epithelial interaction which is under paracrine control. Hepatocyte growth factor (HGF), produced by mesenchymal cells, is a multifunctional growth factor stimulating the movement and growth of epithelial cells including cancer cells. We therefore assessed the relationship between the invasive potential of prostate cancer and HGF in vitro. METHODS: Three human prostate cancer cell lines were used including PC-3 and DU145 (androgen-independent), and LNCaP (androgen-dependent). We studied the expression of the HGF receptor c-met proto-oncogene (c-met) by Western blot analysis, and also determined the effects of HGF on cell scattering, and the mechanisms of invasion and proliferation, by microscopic observation, the matrigel invasion chamber assay, and the MTT assay. RESULTS: c-met was detected in PC-3 and DU145 cells, but not in the LNCaP cells. There was increased cell motility in the scatter assay and an increased cell invasive potential in the matrigel invasion chamber assay by stimulation with HGF only with DU145 cells. CONCLUSION: HGF plays an important role in the invasion and metastasis of the DU145 cell line through a paracrine mechanism mediated by the c-metreceptor. In the PC-3 cell line, the lack of downstream signal transduction after the c-met receptor is suggested.  相似文献   

19.
We have established a cell culture system that reproduces morphogenic processes in the developing mammary gland. EpH4 mouse mammary epithelial cells cultured in matrigel form branched tubules in the presence of hepatocyte growth factor/scatter factor (HGF/SF), the ligand of the c-met tyrosine kinase receptor. In contrast, alveolar structures are formed in the presence of neuregulin, a ligand of c-erbB tyrosine kinase receptors. These distinct morphogenic responses can also be observed with selected human mammary carcinoma tissue in explant culture. HGF/SF-induced branching was abrogated by the PI3 kinase inhibitors wortmannin and LY294002. In contrast, neuregulin- induced alveolar morphogenesis was inhibited by the MAPK kinase inhibitor PD98059. The c-met-mediated response could also be evoked by transfection of a c-met specific substrate, Gab1, which can activate the PI3 kinase pathway. An activated hybrid receptor that contained the intracellular domain of c-erbB2 receptor suffices to induce alveolar morphogenesis, and was observed in the presence of tyrosine residues Y1028, Y1144, Y1201, and Y1226/27 in the substrate-binding domain of c-erbB2. Our data demonstrate that c-met and c-erbB2 signaling elicit distinct morphogenic programs in mammary epithelial cells: formation of branched tubules relies on a pathway involving PI3 kinase, whereas alveolar morphogenesis requires MAPK kinase.  相似文献   

20.
To date most of the studies involving the maintenance of ovarian cell viability have focused on the endocrine, paracrine, and autocrine factors that inhibit these cells from undergoing programmed cell death or apoptosis. Recently, studies have demonstrated that cell contact also prevents ovarian cells from dying via an apoptotic mechanism. In this commentary, the role that homophilic binding of the cell adhesion molecule, N-cadherin, plays in maintaining ovarian cell viability is presented. These studies showed that N-cadherin homophilic binding (1) is part of the mechanism through which cell contact maintains cell viability, (2) results in the activation (i.e. tyrosine phosphorylation) of the fibroblast growth factor (FGF) receptor, and (3) prevents a sustained elevation in intracellular free calcium ([Ca2+]i) which triggers apoptosis. These studies also revealed that hepatocyte growth factor (HGF), also known as scatter factor (SF), disrupts cell contact, which leads to a sustained increase in [Ca2+]i levels and ultimately to cell death. Based on these studies, this commentary presents a putative mechanism that relates the cellular and molecular mechanism through which basic FGF, N-cadherin, and HGF/SF interact to regulate [Ca2+]i levels and ultimately ovarian cell survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号