首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have developed a self-assembled fluorescent cluster comprising a seminaphthorhodafluor (SNARF) derivative protected by a photoremovable o-nitrobenzyl group. Prior to UV irradiation, a colorless and nonfluorescent cluster was spontaneously assembled in aqueous solution. After UV irradiation, the self-assembled cluster remained intact and showed a large enhancement in pH-responsive fluorescence. The unique pH responsive fluorescent cluster could be used as a dual-emissive ratiometric fluorescent pH probe not only in the test tube but also in HeLa cell cultures.  相似文献   

2.
This paper describes the preparation of nanoparticles composed of a magnetic core surrounded by two successive silica shells embedding two fluorophores, showing uniform nanoparticle size (50-60 nm in diameter) and shape, which allow ratiometric pH measurements in the pH range 5-8. Uncoated iron oxide magnetic nanoparticles (~10 nm in diameter) were formed by the coprecipitation reaction of ferrous and ferric salts. Then, they were added to a water-in-oil microemulsion where the hydrophilic silica shells were obtained through hydrolysis and condensation of tetraethoxyorthosilicate together with the corresponding silylated dye derivatives-a sulforhodamine was embedded in the inner silica shell and used as the reference dye while a pH-sensitive fluorescein was incorporated in the outer shell as the pH indicator. The magnetic nanoparticles were characterized using vibrating sample magnetometry, dynamic light scattering, transmission electron microscopy, x-ray diffraction and Fourier transform infrared spectroscopy. The relationship between the analytical parameter, that is, the ratio of fluorescence between the sensing and reference dyes versus the pH was adjusted to a sigmoidal fit using a Boltzmann type equation giving an apparent pK(a) value of 6.8. The fluorescence intensity of the reference dye did not change significantly (~3.0%) on modifying the pH of the nanoparticle dispersion. Finally, the proposed method was statistically validated against a reference procedure using samples of water and physiological buffer with 2% of horse serum, indicating that there are no significant statistical differences at a 95% confidence level.  相似文献   

3.
The structural and functional properties of ultrathin (<5 nm) poly(aniline) (PANI) films deposited on indium-tin oxide (ITO) have been investigated using electrochemical and attenuated total reflection (ATR) spectroscopy methods. Layer-by-layer (LbL) self-assembly was used to form films composed of one and two bilayers of PANI and poly(acrylic acid) (PAA), as well as single PANI layers of approximately monolayer thickness. PANI deposited on an ITO electrode is electroactive at neutral pH, both with and without codeposition of an acid dopant such as PAA. In the absence of PAA, it is hypothesized that the acidic surface groups on ITO can function as the counterion. The pH response of PANI single layer, (PANI/PAA)(1), and (PANI/PAA)(2) films was examined using both potentiometry and ATR spectroscopy. Near-Nernstian potentiometric responses over pH 3-9 were observed for all three types of films, consistent with the weak acid-base behavior expected of polymers assembled in a LbL film. The ATR spectral sensitivity to pH increases as the number of layers in the film increases, with the highest sensitivity achieved by monitoring the absorbance at 800 nm (predominately due to the emeraldine salt form) of (PANI/PAA)(2) films. Codeposition of PANI and PAA appears to produce a wide distribution of strengths of acidic and basic sites in the film and thus a large linear dynamic range, up to six pH units. The water contact angle of (PANI/PAA)(2) is approximately 16 degrees, which is considerably more hydrophilic than either the PANI single layer or (PANI/PAA)(1) films ( approximately 40 degrees ). This film is shown to be a suitable substrate for deposition of a planar supported phospholipid bilayer. The supported membrane is highly impermeable to protons, which makes this architecture useful for monitoring transmembrane charge transport.  相似文献   

4.
In our work, a simple, facile, and green method was developed for the synthesis of water-soluble and well-dispersed fluorescent gold nanoparticles (Au NPs) within 5 min, using captopril as a capping agent. The as-prepared Au NPs showed strong emission at 414 nm, with a quantum yield of 5.5%. The fluorescence of the Au NPs can be strongly quenched by mercury (II) ion (Hg2 +) due to the stronger interactions between thiolates (RS?) and Hg2 +. It was applied to the detection of Hg2 + in water samples in the linear ranges of 0.033–0.133 μM and 0.167–2.500 μM, with a detection limit of 0.017 μM. Therefore, the as-prepared Au NPs can meet the requirement for monitoring Hg2 + in environmental samples.  相似文献   

5.
Zinc oxide nanoparticles were synthesized and self-assembled on the reactive surface of a glass slide functionalized with (3-mercaptopropyl)-trimethoxysilane under ultrasonic irradiation. The structure, morphology, and optical property of the zinc oxide nanoparticles were investigated by TEM, XRD, and UV-vis spectroscopy. The functionalized glass slide was soaked in an aqueous solution which dispersed zinc oxide nanoparticles under ultrasonic irradiation. Zinc oxide multilayer films grew up to several layers (up to 5 layers) depending on the immersion time. The self-assembled zinc oxide nanoparticles multilayer films were characterized using UV-vis spectroscopy and SEM. Ultrasonic irradiation was an efficient method to make multilayer films on the functionalized glass slide with zinc oxide nanoparticles.  相似文献   

6.
Kong H  Lu Y  Wang H  Wen F  Zhang S  Zhang X 《Analytical chemistry》2012,84(10):4258-4261
Fluorescent gold nanoparticle (GNP) is an easily synthesized and biocompatible optical platform for sensing and imaging with tunable near-infrared (NIR) emission. However, the relatively low fluorescence (FL) quantum yield limits the further improvement of sensitivity and application. Here, we find that, on plasmonic substrates, the FL intensity of protein-directed synthesized GNPs can be enhanced significantly (~20-fold). Moreover, protein analytes can interact with GNPs and influence the enhanced fluorescence process so that we can obtain distinct FL image patterns. Then, using the array-based sensing strategy, protein discrimination can be achieved. In our present experiment, five GNPs were used as sensing elements and 10 kinds of proteins at three concentrations (0.2, 0.5, and 1 μM) were successfully identified. This array-based sensing strategy using enhanced-fluorescence from GNPs is highly sensitive and differentiable, expanding the application field of GNPs.  相似文献   

7.
Thiol-derivatised cubic Ag nanoparticles were prepared by adding an AgNO3 solution containing a trace amount of alkanethiol into a solution of NaBH4 and sodium oleate. Their preparation and character were compared with randomly shaped Ag nanoparticles. The thiol was used purposely as orientation agent instead of protective agent. Transfer of cubic Ag nanoparticles from aqueous phase into organic phase or to the interface of aqueous/organic phase has resulted in self-assembled films on the surface of microscope slides and of many other substrates. Transmission electron microscope and UV–vis spectra were used to characterize the cubic Ag nanoparticles. The nanoparticle films were also observed using conventional optical and scanning electron microscope. The mechanisms of the nanoparticles phase-transfer and the formation of the self-assembled nanoparticle films are discussed.  相似文献   

8.
The patterning of indium tin oxide (ITO) films on flexible polyester (PET) substrates by using a self-assembled monolayer (SAM) of octadecyltrimethoxysilane (OTMS) was investigated. After a SAM is deposited on ITO films, the ITO surface hydrophilicity and electron transfer characteristics are altered. The contact angle and electrochemical cyclic voltammetry analyses indicate the optimal process to form a SAM on ITO films operated in a low-humidity environment at 25 ºC for 24 h. The AFM observation shows that the ITO films covered by a SAM can be protected during etching in an oxalic solution, which means a SAM can well play the role of a photoresist during lithographic process.  相似文献   

9.
High-quality epitaxial AlN films were deposited on sapphire substrates at low growth temperature using a helicon sputtering system. SAW filters fabricated on the AlN films exhibited excellent characteristics, with center frequency of 354.2 MHz, which corresponds to a phase velocity of 5667 m/s. An oscillator fabricated using AlN-based SAW devices is presented and applied to deep-UV light detection. A frequency downshift of about 43 KHz was observed when the surface of SAW device was illuminated by a UV source with dominant wavelength of around 200 nm. The results indicate the feasibility of developing remote sensors for deep-UV measurement using AlN-based SAW oscillators.  相似文献   

10.
Gold films with thicknesses ranging from below 1 nm to 3 nm have been simultaneously deposited by the ion beam sputter technique onto the surface of glass substrates smooth on a subnanometer level and onto Si(001) substrates with nanodimensional inhomogeneities in the form of germanium atomic islands. Irrespective of the substrate surface nature, gold deposition initially leads to the formation of a stable layer with a thickness of several atomic monolayers. The gold films with thicknesses above 2 nm are continuous and homogeneous. Terminated in an intermediate stage, the sputter deposition of gold may result in the formation of an inhomogeneous layer of the island type. The results are interpreted taking into account the well-known fact that a high-energy component is present in the flux of the ion beam sputtered target material.  相似文献   

11.
The possibility of fabricating nanoparticles by ion bombardment was investigated by the ion bombardment of indium films on oxide covered Si and Cr surfaces. The different masses of implanting specimen ensured the different energy transfer while the same Si substrate ensured the same thermal conductivity for the In and Cr layers. Chromium served as a reference for the effect of ion bombardment and as a substrate as well. The SRIM program was used to simulate the ion surface interaction process. The nanoparticles were detected by scanning electron microscopy (SEM). We found that the melting of the In layer results in the formation of nanoparticles of 50-300 nm diameter and 5-10 nm height. This method can be promising for nanoparticle formation of materials with low melting point.  相似文献   

12.
Delamination/exfoliation process of the Mg-vermiculite (Letovice, Czech Republic), particles with size less than 5 microm, was studied after potassium persulfate treatment and compared with known method utilized hydrogen peroxide treatment. X-ray powder diffraction (XRPD) patterns showed that treatment of Mg-vermiculite with different molar concentration of potassium persulfate: c = 0.02, 0.04, and 0.08 mol x dm(-3) at the temperature 60 degrees C for 2 hr caused reduction of relative intensity (I(rel.)) of the basal 001 diffraction to the 15%, 9%, and 4%, respectively, compared to intensity of 001 diffraction of untreated Mg-vermiculite (I(rel.) = 100%). On the other hand I(rel.) of the 001 diffraction of Mg-vermiculite after treatment with 30% and 50% (c = 9.8 and 17.4 mol x dm(-3)) hydrogen peroxide at the 60 degrees C for 2 hr decreased only to I(rel.) = 36% and 32%, respectively. Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM) verified effect of potassium persulfate treatment on structure degradation which is connected with higher degree of delamination/exfoliation of the particles and their cracking into nano-sized particles.  相似文献   

13.
The X-ray fluorescence technique was used to determine the thickness of single-layered, double-layered and triple-layered films of copper, bismuth and gold on mylar substrates. An annular 109Cd X-ray source of 5 mCi was used to excite hte characteristic X-rays. The background was much lower as well as flat in the present study in comparison with our earlier results an 241Am exciter source. This resulted in a downward extension of the lower limit of thickness measurement of thin films coupled with an improved accuracy.  相似文献   

14.
15.
Ultrathin films of MgO (~ 6 nm) were deposited on Si(100) using dual ion beam sputtering in different partial pressures of oxygen. These thin films were characterized by X-ray photoelectron spectroscopy (XPS) for chemical state analysis and conducting atomic force microscopy for topography and local conductivity map. No trace of metal Mg was evidenced in these MgO films. The XPS analysis clearly brought out the formation of oxygen interstitials and Mg(OH)2 primarily due to the presence of residual water vapors in the chamber. An optimum value of oxygen partial pressure of ~ 4.4 × 10− 2 Pa is identified with regard to homogeneity of film and stoichiometry across the film thickness (O:Mg::0.93-0.97). The local conductivity mapping investigations also established the film homogeneity in respect of electrical resistivity. Non-linear local current-voltage curves revealed typical tunneling characteristics with barrier width of ~ 5.6 nm and barrier height of ~ 0.92 eV.  相似文献   

16.
A procedure is described for formation of a nano-structured organic-organic interface with increased conductivity at the interface of two polymer films. It is established that conductivity is determined by the type and degree of external action. It is shown that on the basis of this interface it is possible to create chemical sensors, and in fact sensors for the relative humidity of air, ethanol vapor pressure, and pH readings. Translated from Izmeritel’naya Tekhnika, No. 4, pp. 62–64, April, 2009.  相似文献   

17.
18.
Layer-by-layer (LBL) self-assembled multilayer films of gold nanoparticles (AuNPs) on a silicon wafer were demonstrated to be promising substrates for surface-assisted laser desorption/ionization (SALDI) mass spectrometry (MS) of peptides and environmental pollutants for the first time. LBL multilayer films, (AuNPs/PAHC)n, consisting of alternating layers of ammonium citrate capped AuNPs and poly(allylamine hydrochloride) (PAHC) were prepared on a silicon surface. Silicon plates with aggregated AuNPs were more suitable than those with dispersed AuNPs for the SALDI-MS of peptides. The number of particle layers had a significant effect on the laser desorption/ionization of angiotensin I; the peak intensity of the peptide (molecular ion amount) increased with an increase in the number of layers of AuNPs. As a result, the (AuNPs/PAHC)5 multilayer films increased the sensitivity of the angiotensin I to subfemtomoles and raised the useful analyte mass range, thus making it possible to detect small proteins (a 12 kDa cytochrome c). The signal enhancement when using (AuNPs/PAHC)5 may be due to (i) the high absorption of the UV laser light at 337 nm by the AuNP layers, (ii) the low thermal conductivity due to the AuNPs being covered with a thin monolayer of PAHC, and (iii) the increase in the surface roughness (approximately 100 nm) with the number of AuNP layers. Thus, laser-induced rapid high heating of AuNPs for effective desorption/ionization of peptides is possible. In addition, it was found that (AuNPs/PAHC)5 could be used to extract environmental pollutants (pyrene and dimethyldistearylammonium chloride) from very dilute aqueous solutions with concentrations less than 10(-10) mg/mL, and the analytes trapped in the LBL film could be identified by introducing the film directly into the SALDI mass spectrometer without needing to elute the analytes out of the film.  相似文献   

19.
20.
研究了一种新型带有长烷基链的铕配合物Langmuir-Blodgett(LB)膜及其发光性质。实验结果表明,此种配合物能够在水面上形成稳定的单分子膜,单分子占有面积为0.6nm^2,并可将单分子Langmuir膜沉积在亲水的石英基片上,其紫外结果表明,位于287nm处的主吸收峰随着LB膜层数的增加而增加,其吸收强度随层数的增加呈线性关系,证明可以形成均匀LB膜。对其LB膜的荧光光谱研究结果显示,具有典型的铕配合物的发射峰,且具有一定的荧光强度。这为以铕配合物作为分子器件的材料研究提供了实验基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号