首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
In this article, we report the preparation and thermal properties of polyimide–mesophase pitch (MP) composite nanofibers and associated nanofiber nonwoven mats produced using an electrospinning process. The addition of MP increased the thermal conductivities of both the individual composite nanofibers and the in‐plane conductivities of the nanofiber mats. The out‐of‐plane conductivity of the mats remained relatively low due to low through thickness connectivity between the nanofibers. These nanofiber mats are flexible and very thin and are good candidates for thermal management films for future flexible electronic devices. POLYM. ENG. SCI., 54:977–983, 2014. © 2013 Society of Plastics Engineers  相似文献   

2.
The nanofiber deposition method, by electrospinning, was employed to introduce antibacterial activity and biocompatibility to the surface of poly (ethylene terephthalate) (PET) textiles. The polymer blends of PET and chitosan were electrospun on to the PET micro‐nonwoven mats for biomedical applications. The PET/chitosan nanofibers were evenly deposited on to the surface, and the diameter of the nanofibers was in the range between 500 and 800 nm. The surface of the nanofibers was characterized using SEM, ESCA, AFM, and ATR‐FTIR. The wettability of the PET nanofibers was significantly enhanced by the incorporation of chitosan. The antibacterial activity of the samples was evaluated utilizing the colony counting method against Staphylococcus aureus and Klebsiella pneumoniae. The results indicated that the PET/chitosan nanofiber mats showed a significantly higher growth inhibition rate compared with the PET nanofiber control. In addition, the fibroblast cells adhered better to the PET/chitosan nanofibers than to the PET nanofibers mats, suggesting better tissue compatibility. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

3.
A review of vapor grown carbon nanofiber/polymer conductive composites   总被引:3,自引:0,他引:3  
Vapor grown carbon nanofiber (VGCNF)/polymer conductive composites are elegant materials that exhibit superior electrical, electromagnetic interference (EMI) shielding effectiveness (SE) and thermal properties compared to conventional conductive polymer composites. This article reviews recent developments in VGCNF/polymer conductive composites. The article starts with a concise and general background about VGCNF production, applications, structure, dimension, and electrical, thermal and mechanical properties. Next composites of VGCNF/polymer are discussed. Composite electrical, EMI SE and thermal properties are elaborated in terms of nanofibers dispersion, distribution and aspect ratio. Special emphasis is paid to dispersion of nanofibers by melt mixing. Influence of other processing methods such as in-situ polymerization, spinning, and solution processing on final properties of VGCNF/polymer composite is also reviewed. We present properties of CNTs and CFs, which are competitive fillers to VGCNFs, and the most significant properties of their composites compared to those of VGCNF/polymer composites. At the conclusion of the article, we summarize the most significant achievements and address the future challenges and tasks in the area related to characterizing VGCNF aspect ratio and dispersion, determining the influence of processing methods and conditions on VGCNF/polymer composites and understanding the structure/property relationship in VGCNF/polymer composites.  相似文献   

4.
Electrospinning processing can be applied to fabricate fibrous polymer mats composed of fibers whose diameters range from several microns down to 100 nm or less. In this article, we describe how electrospinning was used to produce zein nanofiber mats and combined with crosslinking to improve the mechanical properties of the as‐spun mats. Aqueous ethanol solutions of zein were electrospun, and nanoparticles, nanofiber mats, or ribbonlike nanofiber mats were obtained. The effects of the electrospinning solvent and zein concentration on the morphology of the as‐spun nanofiber mats were investigated by scanning electron microscopy. The results showed that the morphologies of the electrospun products exhibited a zein‐dependent concentration. Optimizing conditions for zein produced nanofibers with a diameter of about 500 nm with fewer beads or ribbonlike nanofibers with a diameter of approximately 1–6 μm. Zein nanofiber mats were crosslinked by hexamethylene diisocyanate (HDI). The tensile strength of the crosslinked electrospun zein nanofiber mats was increased significantly. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103:380–385, 2007  相似文献   

5.
Conductive nanofibers of poly(vinylidene fluoride) (PVDF) filled with polyaniline (PANi)‐coated multi‐wall carbon nanotubes (MWCNTs) were fabricated using the electrospinning technique. PANi is an intrinsically conductive polymer. The addition of PANi‐coated MWCNTs to PVDF created short conductive strands on the surface of the nanofibers, facilitating the formation of a conductive network in the transverse direction of the nanofibers. Piezoelectricity along with electric conductivity makes these PVDF nanofibers promising for applications such as sensors and actuators. Electrospun PVDF nanofiber mats had higher piezoelectricity than melt‐processed samples produced using traditional polymer processing techniques, such as compression molding. Spectroscopic imaging techniques were employed to study the effects of the filler and processing conditions on the nanofiber structure. X‐ray diffraction, Fourier transform infrared spectroscopy and differential scanning calorimetry results indicated a large increase in the β‐phase crystals of the PVDF nanofibers. This higher content of β‐phase crystals enhanced the piezoelectricity of the nanofibers. © 2015 Society of Chemical Industry  相似文献   

6.
Investigation of the potential use of nanofibers to reinforce composites has gained significance in many applications. In this article, the nanofiber mats of poly(acrylic acid) (PAA) and styrene–butadiene–styrene (SBS) triblock copolymer with composites structure were interweaved by double needle electrospinning process. The multiple nanofiber mats were added to conventional water‐swellable rubber (WSR). Improved mechanical and physical properties of WSR were obtained. Enhancement of the swellability of WSR + PAA/SBS nanofiber mats was derived from the PAA constituent absorbing water from the surface into the bulk and introducing random internal water channels between discontinuous superabsorbent polymers. The role of SBS nanofibers in the composite of WSR + PAA/SBS nanofiber mats was more related to the mechanical properties, where the breaking force of the composite increased to twice that of the conventional WSR. Interestingly, after immersion of the WSR + PAA/SBS nanofiber mats in water for 1 week, there was only a slight decrease in their mechanical properties of less than 5% compared to the dry state. The mechanisms and effects of the nanofiber mats in enhancing the mechanical and water swelling properties of WSR are also discussed. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44213.  相似文献   

7.
Forcespinning® technology was used to study large-scale production of conductive nonwoven nanofiber composite mats. Carboxyl functionalized multi-walled carbon nanotubes (CNT) were used to reinforce poly(methyl methacrylate) (PMMA). Composite nanofibers were developed with average diameters ranging from 370 nm to 800 nm depending on the selected processing parameters. It was found that the most influential processing parameters were viscosity of the solution and angular velocity used in the system. SEM revealed polymer wetted CNT aligned and oriented along the axis of the nanofibers. The mechanical and electrical properties of the composites were improved, compared to those of the pristine PMMA nanofibers. A 10 orders of magnitude drop in electrical resistivity and an electromagnetic shielding effectiveness of more than 20 db were obtained. Raman and Fourier transform infrared spectroscopy analyses indicated changes on the asymmetry of the polar bonds due to interactions between the CNTs and the matrix.  相似文献   

8.
This article describes the adsorption and tensile behavior of electrospun polyacrylonitrile (PAN) nanofiber mats loaded with different amounts of ZnO [0.5, 1.0, 2.0, and 5.0 wt%] nanoparticles. X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transforminfrared (FTIR) spectroscopy, and thermal gravimetric analysis (TGA) were utilized to characterize the resulting composite nanofibers. Microscopic investigations revealed that the increase in surface roughness and diameter of the electrospun PAN nanofibers was due to the addition of ZnO nanoparticles. Adsorption results indicated that the fabricated PAN/ZnO (2.0 wt%) composite nanofiber mats showed the best adsorption performance with 261% and 167% increase in adsorption capacities for Pb(II) and Cd(II) from aqueous solutions, respectively, compared to pristine PAN nanofibers. The adsorption equilibrium was reached within 60 min, and the process could be described using the nonlinear pseudo-second-order kinetic model. The adsorption isotherm study was better represented by the Langmuir model, which suggested a homogeneous distribution of the monolayer adsorptive sites on the surface of the composite nanofibers. Mechanical testing revealed that the decrease in tensile strength and elongation at breakof the PAN/ZnO composite nanofiber mats was due to the formation of some bead defects and agglomerates within the structure of the PAN nanofibers. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47209.  相似文献   

9.
Generally, polymer solution or sol–gel is used to produce electrospun nanofibers via the electrospinning technique. In the utilized sol–gel, the metallic precursor should be soluble in a proper solvent since it has to hydrolyze and polycondensate in the final solution; this strategy straitens the applications of the electrospinning process and limits the category of the electrospinnable materials. In this study, we are discussing electrospinning of a colloidal solution process as an alternative strategy. We have utilized many solid nanopowders and different polymers as well. All the examined colloids have been successfully electrospun. According to the SEM and FE SEM analyses for the obtained nanofiber mats, the polymeric nanofibers could imprison the small nanoparticles; however, the big size ones were observed attaching the nanofiber mats. Successfully, the proposed strategy could be exploited to prepare polymeric nanofibers incorporating metal nanoparticles which might have interesting properties compared with the pristine. For instance, PCL/Ti nanofiber mats exhibited good bioactivity compared with pristine PCL. The proposed strategy can be considered as an innovated methodology to prepare a new class of the electrospun nanofiber mats which cannot be obtained by the conventional electrospinning technique.  相似文献   

10.
In this paper, we fabricate ZnO nanofibers and nanoparticles through electrospinning precursor solution zinc acetate(ZnAc)/cellulose acetate(CA) in mixed-solvent N , N -dimethylformamide/acetone. Depending on the posttreatment of precursor ZnAc/CA composite nanofibers, both ZnO nanofibers and nanoparticles were synthesized after calcination of precursor nanofibers. The morphology and crystal structure of the ZnO nanofiber and nanoparticle were characterized by scanning electron microscopy, transmission electron microscopy, atomic force microscopy, and X-ray diffraction. It was found that the mean diameter of the ZnO nanofiber and nanoparticle was ca. 78 and 30 nm, respectively. The photo-degradation of dye molecules such as Rhodamine B and acid fuchsin catalyzed by the ZnO nanofiber and nanoparticle was evaluated under the irradiation of visible light. Both morphological ZnO species showed strong photocatalytic activity. However, the ZnO nanofiber in the form of nanofibrous mats showed much higher efficiency than the nanoparticle although the latter has a smaller size than the former. The porous structure of ZnO nanofibrous mats is believed to improve the contacting surface areas between the catalyst and the dye molecules, while the aggregation of ZnO nanoparticle in the solution lowers the photocatalytic efficiency.  相似文献   

11.
This article presents a single, scalable manufacturing process for the continuous production of nanofiber‐based ropes, cables, microscale wire coatings, and multimaterial mats. The ropes, cables, and wire coatings were manufactured with a cascading electrospinning setup that was used in conjunction with a rotating ring collector and a take‐up reel. The fibrous mats were realized by replacing the ring collector with a directed nozzle. Both configurations allowed for nanofiber architectures with multiple layers and material combinations. The tensile failure patterns of the cables revealed distinct effects of the multimaterial sheaths. The adhesion strength and load–displacement profiles for the nanofiber coating interfaces were observed to be polymer‐specific. For multimaterial mats, the cospinning of the polymers resulted in a blended mechanical behavior for the composite mats, in contrast to the sequential ply failure observed in laminated mats. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43747.  相似文献   

12.
In this study, transparent conductive films of tin-doped indium oxide (ITO) were deposited onto the polyamide 6 (PA6) nanofiber substrates at room temperature. Atomic force microscopy (AFM) was employed to study the morphology of the nanofibers, respectively. The AFM results indicated a significant change in the morphology of the nanofibers before and after the ITO sputter coatings. The light transmittance and surface conductivity of the ITO-deposited nanofibers were also investigated. It was found that the surface resistivity of the PA6 nanofiber with the ITO deposition had a significant drop and the ITO deposition obviously affected the light transmittance of the PA6 nanofibers.  相似文献   

13.
综述了近十几年来高温质子交换膜燃料电池用离子液体聚合物电解质的研究进展及其在高温质子交换膜燃料电池中的应用进展,指出了此类电解质目前存在的亟待解决的两个问题:咪唑类离子液体毒化Pt基催化剂和复合膜中离子液体的长期稳定性。最后对高温质子交换膜燃料电池用离子液体聚合物电解质的发展前景作了展望,即开发与Pt基催化剂相容的离子液体聚合物电解质以及预防复合膜内离子液体的流失,即提高高温质子交换膜燃料电池的性能及长期稳定性,最终提高高温燃料电池的寿命。  相似文献   

14.
Electrospun nanofibers are promising candidates in the nanotechnological applications due to the advantages of the nanofibrous morphology. Therefore, many attempts were reported to modify the electrospun mats to gain more beneficial properties. In the present study, we are introducing a strategy to synthesize electrospun polymeric nanofiber mats containing spider-net binding the main nanofibers. Addition with long stirring time of a metallic salt having tendency to ionize rather than formation of sol–gel in the host polymer solution reveals to synthesize a spider-net within the electrospun nanofibers of the utilized polymer. Nylon6, polyurethane and poly(vinyl alcohol) have been utilized; NaCl, KBr, CaCl2 and H2PtCl6 have been added to the polymeric solutions. In the case of nylon6 and poly(vinyl alcohol), addition of the inorganic salts resulted in the formation of multi-layers spider-network within the electrospun nanofibers mats. The synthesized spider-nets were almost independent on the nature of the salt; the optimum salt concentration was 1.5 wt%. The metallic acid led to form trivial spider-nets within both of nylon6 and poly(vinyl alcohol) nanofibers. In a case of polyurethane, few spider-nets were formed after salt addition due to the low polarity of the utilized solvents. According to TEM analysis, the synthesized spider-net consisted of joints; the later issued from the main nanofibers at Taylor's cone zone. The spider-net improved the mechanical properties and the wetability of the nylon6 nanofiber mats, accordingly a mat having amphiphilic feature has been prepared.  相似文献   

15.
Electrospinning of 4,4′‐bishydroxydeoxybenzoin (BHDB)‐polyphosphonate was performed by varying polymer concentration, flow rate, and the distance between the charged electrode and the grounded target. High flame‐resistant nanofibers with diameters of ~ 100 nm were obtained by spinning from 65 wt % DMF solution. The nanofibers were unimodal in distribution and uniaxially aligned. The heat release capacity and char yield of the BHDB‐polyphosphonate nanofibers were 70 ± 3 J/g K, and 53%, respectively, in close agreement with the values obtained from the bulk materials. Electrospun nanofiber mats of BHDB‐polyphosphonate with high flame‐retarding properties had good mechanical strength (~ 95 MPa) and modulus (~ 3.9 GPa). © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
The aim of this study was to prepare polyvinyl borate (PVB)/poly(methyl methacrylate) (PMMA) blend nanofibers by electrospinning process. Polyvinyl borate was synthesized by the condensation reaction of polyvinyl alcohol and boric acid. FTIR analyses showed that boron atoms were found to be integrated into the polymer network. Blending PMMA with PVB decreased the fiber diameter and enhanced the surface roughness of PVB/PMMA blend nanofiber mats. The water wetting property of the nanofiber mats was influenced by the surface roughness. The blend composition with the highest polyvinyl borate content was found to be suitable for thermally stable nanofiber formation.  相似文献   

17.
In this work, we present the preparation of polylactic acid (PLLA)/polyaniline (PANI) conductive composite nanofibers mats. They are prepared by bulk oxidative solution polymerization of PANI onto electrospun non‐woven fibers mats of PLLA. The PANI ratio in the composite is about 70%w/w. Scanning electron microscopy (SEM) shows that PLLA nanofibers are randomly oriented, beads free with diameters of 186 ± 85 nm, The PLLA/PANI composite nanofibers diameter values are 518 ± 128 nm with a good adherence between PANI and PLLA nanofibers. DSC and XRD measurements reveal an amorphous structure of the electrospun PLLA fibers due to the rapid evaporization of the solvent. FTIR and UV–vis spectra reflect good mutual interactions between PANI and PLLA chains. The DC‐conductivities ( ) far better than other published ones for similar composites prepared by bulk oxidative solution polymerization of PANI onto other electrospun nanofiber mats or with electrospun nanofibers from a solution mixture of PLLA and PANI. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41618.  相似文献   

18.
Magnetically responsive polymer composites have great potential for use in diverse biomedical applications. In this study, composite biomaterials consisting of silk fibroin (SF) and superparamagnetic iron oxide nanoparticles (SPIONs) were fabricated by the electrospinning method. Two different methods were employed to incorporate the SPIONs into the SF nanofibers. In the first encapsulation method (M1), SPIONs (1.0, 3.0, and 5.0 wt%) were initially included in the electrospinning solution. In the second dip-coating method (M2), electrospun SF nanofiber mats were immersed in the aqueous suspensions of SPIONs (10, 30 and 50% v/v). Then, the pure and composite silk fibroin composite mats were comparatively evaluated for their morphological, chemical, magnetic, mechanical and in vitro biological properties, by using a number of methods including SEM, TEM, FTIR, XRD, EDS, VSM, TGA, mechanical tensile tests, as well as by indirect in vitro cytotoxicity and in vitro hemocompatibility analyses. Overall findings suggested that, while M1 nanofiber mats could be a suitable candidate for use in tissue engineering as a magnetically responsive cytocompatible scaffold, the M2 nanofiber mats perhaps could be more appropriate as an interface for triggering the in vitro stem cell differentiation and/or biosensor applications. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48040.  相似文献   

19.
Sea‐island polyurethane (PU)/polycarbonate (PC) composite nanofibers were obtained through electrospinning of partially miscible PU and PC in 3 : 7 (v/v) N,N‐dimethylformamide (DMF) and tetrahydrofuran (THF) mixture solvent. Their structures, mechanical, and thermal properties were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric (TG), and differential scanning calorimetry (DSC). The structures and morphologies of the nanofibers were influenced by composition ratio in the binary mixtures. The pure PC nanofiber was brittle and easy to break. With increasing the PU content in the PU/PC composite nanofibers, PU component not only facilitated the electrospinning of PC but improved the mechanical properties of PU/PC nanofibrous mats. In a series of nanofibrous mats with varied PU/PC composition ratios, PU/PC 70/30 showed excellent tensile strength of 9.60 Mpa and Young's modulus of 55 Mpa. After selective removal of PC component in PU/PC composite nanofibers by washing with acetone, the residual PU maintained fiber morphology. However, the residual PU nanofiber became irregular and contained elongated indents and ridges along the fiber surface. PU/PC composite fibers showed sea‐island nanofiber structure due to phase separation in the spinning solution and in the course of electrospinning. At PC content below 30%, the PC domains were small and evenly dispersed in the composite nanofibers. As PC content was over 50%, the PC phases became large elongated aggregates dispersed in the composite nanofibers. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
Molecularly imprinted polymer microspheres were immobilized within a polymer nanofiber membrane by electrospinning. Such membranes simplify the handling of functional microspheres and provide specific recognition capabilities for solid-phase extraction and filtration applications. In this study, microspheres were prepared by precipitation polymerization of methacrylic acid and divinylbenzene as a cross-linker with the target molecule (-)-cinchonidine and then, they were electrospun into a non-woven polyacrylonitrile nanofiber membrane. The composite membrane showed specific affinity for (-)-cinchonidine which was attributed to the functional microspheres as confirmed by Raman microscopy. The target molecule capturing capacity of the composite membrane was 5 mg/g or 25 mg/g immobilized functional microsphere. No difference in target affinity was observed between the immobilized microspheres and the free microspheres. These results reveal that electrospun composite membranes are a feasible approach to immobilizing functional microspheres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号