首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A thermosensitive amphiphilic triblock copolymer, poly(d,l ‐lactide) (PLA)‐b‐poly(N‐isopropyl acrylamide) (PNIPAAM)‐b‐PLA, was synthesized by the ring‐opening polymerization of d,l ‐lactide; the reaction was initiated from a dihydroxy‐terminated poly(N‐isopropyl acrylamide) homopolymer (HO‐PNIPAAM‐OH) created by radical polymerization. The molecular structure, thermosensitive characteristics, and micellization behavior of the obtained triblock copolymer were characterized with Fourier transform infrared spectroscopy, 1H‐NMR, gel permeation chromatography, dynamic light scattering, and transmission electron microscopy. The obtained results indicate that the composition of PLA‐b‐PNIPAAM‐b‐PLA was in good agreement with what was preconceived. This copolymer could self‐assemble into spherical core–shell micelles (ca. 75–80 nm) in aqueous solution and exhibited a phase‐transition temperature around 26 °C. Furthermore, the drug‐delivery properties of the PLA‐b‐PNIPAAM‐b‐PLA micelles were investigated. The drug‐release test indicated that the synthesized PLA‐b‐PNIPAAM‐b‐PLA micelles could be used as nanocarriers of the anticancer drug adriamycin (ADR) to effectively control the release of the drug. The drug‐delivery properties of PLA‐b‐PNIPAAM‐b‐PLA showed obvious thermosensitive characteristics, and the release time of ADR could be extended to 50 h. This represents a significant improvement from previous PNIPAAM‐based drug‐delivery systems. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45304.  相似文献   

2.
A series of poly(?‐caprolactone)–poly(ethylene glycol) (PCL‐PEG) and poly(?‐caprolactone/glycolide)–poly(ethylene glycol) [P(CL/GA)‐PEG] diblock copolymers were prepared by ring‐opening polymerization of ?‐caprolactone or a mixture of ?‐caprolactone and glycolide using monomethoxy PEG (mPEG) as macroinitiator and Sn(Oct)2 as catalyst. The resulting copolymers were characterized using 1H‐NMR, gel permeation chromatography, differential scanning calorimetry, and wide‐angle X‐ray diffraction. Copolymer micelles were prepared using the nanoprecipitation method. The morphology of the micelles was spherical or worm‐like as revealed by transmission electron microscopy, depending on the copolymer composition and the length of the hydrophobic block. Introduction of the glycolide component, even in small amounts (CL/GA = 10), disrupted the chain structure and led to the formation of spherical micelles. Interestingly, the micelle size decreased with the encapsulation of paclitaxel. Micelles prepared from mPEG5000‐derived copolymers exhibited better drug loading properties and slower drug release than those from mPEG2000‐derived copolymers. Drug release was faster for copolymers with shorter PCL blocks than for those with longer PCL chains. The introduction of glycolide moieties enhanced drug release, but the overall release rate did not exceed 10% in 30 days. In contrast, drug release was enhanced in acidic media. Therefore, these bioresorbable micelles and especially P(CL/GA)‐PEG micelles with excellent stability, high drug loading content, and prolonged drug release could be promising for applications as drug carriers. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45732.  相似文献   

3.
Novel amphiphilic star‐shaped terpolymers comprised of hydrophobic poly(?‐caprolactone), pH‐sensitive polyaminoester block and hydrophilic poly(ethylene glycol) (Mn = 1100, 2000 g mol?1) were synthesized using symmetric pentaerythritol as the core initiator for ring‐opening polymerization (ROP) reaction of ?‐caprolactone functionalized with amino ester dendrimer structure at all chain ends. Subsequently, a second ROP reaction was performed by means of four‐arm star‐shaped poly(?‐caprolactone) macromer with eight ‐OH end groups as the macro‐initiator followed by the attachment of a poly(ethylene glycol) block at the end of each chain via a macromolecular coupling reaction. The molecular structures were verified using Fourier transform infrared and 1H NMR spectroscopies and gel permeation chromatography. The terpolymers easily formed core–shell structural nanoparticles as micelles in aqueous solution which enhanced drug solubility. The hydrodynamic diameter of these agglomerates was found to be 91–104 nm, as measured using dynamic light scattering. The hydrophobic anticancer drug curcumin was loaded effectively into the polymeric micelles. The drug‐loaded nanoparticles were characterized for drug loading content, encapsulation efficiency, drug–polymer interaction and in vitro drug release profiles. Drug release studies showed an initial burst followed by a sustained release of the entrapped drug over a period of 7days at pH = 7.4 and 5.5. The release behaviours from the obtained drug‐loaded nanoparticles indicated that the rate of drug release could be effectively controlled by pH value. Altogether, these results demonstrate that the designed nanoparticles have great potential as hydrophobic drug delivery carriers for cancer therapy. © 2015 Society of Chemical Industry  相似文献   

4.
A convenient approach has been developed for the preparation of microsize hydrogels composed of crosslinked poly(acrylic acid) (PAA) and poly(N‐isopropylacrylamide) (PNIPAm). First, semi‐interpenetration polymer networks of hydropropylcellulose (HPC) and PNIPAm‐co‐PAA copolymer are formed through the copolymerization and crosslinking of monomer acrylic acid and N‐isopropylacrylamide in HPC aqueous solution. After the selective removal of HPC from networks due to ionization of PAA units and disruption of hydrogen bonding with increasing pH, PNIPAm‐co‐PAA microgels are obtained, whose volume is confirmed to be responsive to both temperature and pH. Doxorubicin hydrochloride (Dox) can be encapsulated in PNIPAm‐co‐PAA microgels with high drug loading driven by the electrostatic interaction, and a sustained‐release characteristic of Dox from the microgels is observed under physiological pH value and temperature. In vitro cell experiments, the drug‐loaded microgels can be taken up by LoVo cells and release their payload in cell cytoplasm without loss of drug efficacy. This indicates that PNIPAm‐co‐PAA microgels might be a potential drug delivery carriers especially for water‐soluble or polypeptide drugs. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
The aim of the research presented was to develop a potential liver‐targeting prolonged‐circulation polymeric prodrug of doxorubicin (Dox) with a pH‐triggered drug release profile. In particular, linear dendritic block copolymers composed of polyamidoamine dendrimer (PAMAM) and poly(ethylene glycol) (PEG; number‐average molecular weight of 2000 g mol?1) with or without galactose (Gal) were synthesized. Dox was coupled to the copolymers via an acid‐labile hydrazone linker. These prodrugs, designated Gal‐PEG‐b‐PAMAM‐Doxn and mPEG‐b‐PAMAM‐Doxm, showed accelerated Dox release as the pH decreased from 8.0 to 5.6. Cytotoxicity of the prodrugs was lower than that of free Dox due to the gradual drug release nature. Compared to mPEG‐b‐PAMAM‐Doxm, Gal‐PEG‐b‐PAMAM‐Doxn showed rather high cytotoxicity against Bel‐7402, suggestive of its galactose receptor‐mediated enhanced tumor uptake. This galactose receptor‐mediated liver‐targeted profile was further confirmed by the prolonged retention time in hepatoma tissue monitored using magnetic resonance imaging. Gal‐PEG‐b‐PAMAM‐Doxn showed better in vivo antitumor efficacy than free Dox, suggesting its great potential as a polymeric antitumor prodrug. Copyright © 2010 Society of Chemical Industry  相似文献   

6.
A novel approach to self‐assembled and shell‐crosslinked (SCL) micelles from the diblock copolymer poly(L ‐lactide)‐block‐poly(L ‐cysteine) to be used as drug and protein delivery carriers is described. Rifampicin was used as a model drug. The drug‐loaded SCL micelles were obtained by self‐assembly of the copolymer in the presence of the drug in aqueous media. Their morphology and size were studied with dynamic light scattering and field emission scanning electron microscopy. The rifampicin loading capacity and encapsulation efficiency were studied with ultraviolet–visible spectrophotometry. The drug‐release rate in vitro depended on the oxidizing and reducing environment. Moreover, a straightforward approach to the conjugation of the copolymer with bovine serum albumin (BSA) was developed, and a gel electrophoresis test demonstrated that this conjugated BSA could be reversibly released from the copolymer substrate under reducing conditions. In conclusion, this L ‐cysteine copolymer can be used in drug delivery and in protein fixation and recovery. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

7.
Thermoresponsive poly(N‐isopropyl acrylamide) (PNIPAM)‐block‐hydroxy‐terminated polybutadine‐block‐PNIPAM triblock copolymers were synthesized by atom transfer radical polymerization; this was followed by the in situ epoxidation reaction of peracetic acid. The copolymers were characterized by 1H‐NMR, Fourier transform infrared spectroscopy, and size exclusion chromatography measurements, and their physicochemical properties in aqueous solution were investigated by surface tension measurement, fluorescent spectrometry, ultraviolet–visible transmittance, transmission electron microscopy observations, dynamic light scattering, and so on. The experimental results indicate that the epoxidized copolymer micelle aggregates retained a spherical core–shell micelle structure similar to the control sample. However, they possessed a decreased critical aggregate concentration (CAC), increased hydrodynamic diameters, and a high aggregation number and cloud point because of the incorporation of epoxy groups and so on. In particular, the epoxidized copolymer micelles assumed an improved loading capacity and entrapment efficiency of the drug, a preferable drug‐release profiles without an initial burst release, and a low cytotoxicity. Therefore, they were more suitable for the loading and delivery of the hydrophobic drug as a controlled release drug carrier. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41877.  相似文献   

8.
For the increasing demands of multifunctional materials in applications such as drug delivery system, a pH‐ and temperature‐responsive polyelectrolyte copolymer gel system was studied using rheometry. Rheological properties, determined by plate–plate rheometry in oscillatory shear, of hydrogels formed by free radical initiated copolymerization of N‐isopropylacrylamide (NIPA) and 2‐acrylamido‐2‐methylpropanesulphonic acid (AMPS) in the presence of methylene bisacrylamide (MBAA) as crosslinker are compared with the properties of semi‐interpenetrating network (SIPN) polyelectrolyte gels made by incorporation of poly(ethylene glycol) with molar mass 6000 g mol?1 (PEG6000). Based on our systematic studies for this PEG/SIPN system, the effects of initiator and crosslinker concentration, relative proportions of comonomer units in the main chains, PEG6000 content and temperature on viscoelastic properties, unusual high storage moduli at small strain for the SIPN were discussed. The SIPN gel with characteristics of PEG molecules as well as pH and temperature responsiveness from AMPS and NIPA units has potential application in drug delivery system design. Ice‐like rheological behavior of the PEG/AMPS‐NIPA SIPN gels at low temperature was first time reported and water remains homogeneous without phase separation in PEG/AMPS‐NIPA SIPN hydrogels at low temperature may be considered as an ideal candidate for water storage material. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

9.
Poly(N‐vinylpyrrolidone) (PVP) groups were grafted onto poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) backbone to modify the properties of PHBV and synthesize a new novel biocompatible graft copolymer. Based on these graft copolymers, electrospun fiber mats and commonly cast films were explored as drug delivery vehicles using tetracycline hydrochloride as a model drug. Toward that end, the fibers were electrospun and the films were cast from chloroform solutions containing a small amount of methanol to solubilize the drug. The Brookfield viscosities of the solution were determined to achieve the optimal electrospinning conditions. The vitro release of the tetracycline hydrochloride from these new drug delivery systems was followed by UV–vis spectroscopy. To probe into the factors affected on the release behavior of these drug delivery systems, their water absorbing abilities in phosphate buffer solution were investigated, together with their surface hydrophilicity, porosity and crystallization properties were characterized by water contact angles, capillary flow porometer, DSC, and WAXD, respectively. The morphological changes of these drug delivery vehicles before and after release were also observed with SEM. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

10.
Chitosan‐g‐poly(vinyl alcohol) (PVA) copolymers with different grafting percent were prepared by grafting water‐soluble PVA onto chitosan. The drug‐release behavior was studied using the chitosan‐g‐PVA copolymer matrix containing prednisolone in a drug‐delivery system under various conditions. The relationship between the amount of the released drug and the square root of time was linear. From this result, the drug‐release behavior through the chitosan‐g‐PVA copolymer matrix is shown to be consistent with Higuchi's diffusion model. The drug‐release apparent constant (KH) was slightly decreased at pH 1.2, but increased at pH 7.4 and 10 according to the increasing PVA grafting percent. Also, KH was decreased by heat treatment and crosslinking. The drug release behavior of the chitosan‐g‐PVA copolymer matrix was able to be controlled by the PVA grafting percent, heat treatment, or crosslinking and was also less affected by the pH values than was the chitosan matrix. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 458–464, 1999  相似文献   

11.
Surfactant‐free nanoparticles of poly(DL ‐lactide‐co‐glycolide) (PLGA) nanoparticles were prepared with or without poly(L ‐lactide)‐poly(ethylene oxide) (LE) diblock copolymer (abbreviated as PLGA/LE and PLGA nanoparticles) by dialysis method. LE diblock copolymer was used to make PLGA nanoparticles to alternate conventional surfactant. The size of PLGA and PLGA/LE nanoparticles was 295.3 ± 171.3 and 307.6 ± 27.2 nm, respectively, suggesting LE diblock copolymer might be coated onto the surface of nanoparticles. Observation of scanning electron microscope (SEM) showed that PLGA/LE nanoparticles have spherical shapes ranging ~ 200–500 nm. In 1H‐NMR study, characteristic peaks of the methyl protons of PLGA disappeared in D2O, whereas characteristic peaks of the methyl proton of both PEG and PLGA were shown in both CDCl3 and D2O, indicating that LE diblock copolymer coated on the surface of the PLGA nanoparticles. The higher the initial content of drug, the higher the drug contents and the lower the loading efficiency. PLGA/LE nanoparticles at higher drug contents resulted in slower adriamycin·HCl (ADR) release rate than that of lower drug contents. Also, slower release rate of ADR was achieved by entrapped into the PLGA/LE nanoparticles, whereas LE polymeric micelles showed rapid ADR release. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1116–1123, 2003  相似文献   

12.
A series of hyperbranched poly(amine‐ester)‐co‐D ,L ‐lactide (HPAE‐co‐PLA) copolymer were synthesized by ring‐opening polymerization of D ,L ‐lactide with Sn(Oct)2 as catalyst to a fourth generation branched poly(amine‐ester) (HPAE‐OHs4). The chemical structures of copolymers were determined by FTIR, 1H‐NMR, 13C‐NMR, and TGA. Double emulsion (DE) and nanoprecipitation (NP) method were used to fabricate the nanoparticles of these copolymers encapsulating bovine serum albumin (BSA) as a model. DSC thermo‐grams indicated that the nanoparticles with BSA kept stable below 40°C. Different factors which influence on particular size and encapsulation efficiency (EE) were investigated. Their EE to BSA could reach 97.8% at an available condition. In vitro release behavior of NPs showed a continuous release after a burst release. The stability maintenance of BSA in the nanoparticle release in vitro was also measured via circular dichroism and fluorescence spectrometry. The results showed that the copolymer nanoparticles have a promising potential in protein delivery system. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

13.
The aim of the study was to investigate the synthesis of a copolymer bearing cyclic carbonate and its miscibility with styrene/acrylonitrile copolymer (SAN) or poly(vinyl chloride) (PVC). (2‐Oxo‐1,3‐dioxolan‐4‐yl)methyl vinyl ether (OVE) as a monomer was synthesized from glycidyl vinyl ether and CO2 using quaternary ammonium chloride salts as catalysts. The highest reaction rate was observed when tetraoctylammonium chloride (TOAC) was used as a catalyst. Even at the atmospheric pressure of CO2, the yield of OVE using TOAC was above 80% after 6 h of reaction at 80°C. The copolymer of OVE and N‐phenylmaleimide (NPM) was prepared by radical copolymerization and was characterized by FTIR and 1H‐NMR spectroscopies and differential scanning calorimetry (DSC). The monomer reactivity ratios were given as r1 (OVE) = 0.53–0.57 and r2 (NPM) = 2.23–2.24 in the copolymerization of OVE and NPM. The films of poly(OVE‐co‐NPM)/SAN and poly(OVE‐co‐NPM)/PVC blends were cast from N‐dimethylformamide. An optical clarity test and DSC analysis showed that poly(OVE‐co‐NPM)/SAN and poly(OVE‐co‐NPM)/PVC blends were both miscible over the whole composition range. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1809–1815, 2000  相似文献   

14.
This work evaluates the transdermal drug delivery properties of amphiphilic copolymer self‐assembled nanoparticles by skin penetration experiments in vitro. Paclitaxel‐loaded methoxy poly(ethylene glycol)‐block‐poly(D ,L ‐lactic acid) diblock copolymer nanoparticles (PNPs) were prepared by a solid dispersion technique and were applied to the surface of excised full‐thickness rat skin in Franz diffusion cells. HPLC, transmission electron microscopy, Fourier transform infrared spectroscopy and 1H NMR were used to assay the receptor fluid. The results show that the amphiphilic copolymer nanoparticles with the entrapped paclitaxel are able to penetrate rat skin. Ethanol can improve the delivery of PNPs and increase the cumulative amount of paclitaxel in the receptor fluid by 3 times. Fluorescence microscopy measurements indicate that the PNPs can penetrate the skin not only via appendage routes including sweat ducts and hair follicles but also via epidermal routes. Copyright © 2007 Society of Chemical Industry  相似文献   

15.
A series of poly(5,5‐dimethyl‐1,3‐dioxan‐2‐one)‐block‐methoxy poly(ethylene glycol) (PDTC‐b‐mPEG) copolymers were synthesized by the ring‐opening polymerization of 5,5‐dimethyl‐1,3‐dioxan‐2‐one (DTC) in bulk, using methoxy poly(ethylene glycol) (mPEG) as initiator without adding any catalysts. The resulting copolymers were characterized by Fourier transform infrared spectra, 1H NMR and gel permeation chromatography. The influences of some factors such as the DTC/mPEG molar feed ratio, reaction time and reaction temperature on the copolymerization were investigated. The experimental results showed that mPEG could effectively initiate the ring‐opening polymerization of DTC in the absence of catalyst, and that the copolymerization conditions had a significant effect on the molecular weight of PDTC‐b‐mPEG copolymer. In vitro drug release study demonstrated that the amount of indomethacin released from PDTC‐b‐mPEG copolymer decreased with increase in the DTC content in the copolymer. © 2013 Society of Chemical Industry  相似文献   

16.
Poly(methyl methacrylate)‐poly(L ‐lactic acid)‐poly(methyl methacrylate) tri‐block copolymer was prepared using atom transfer radical polymerization (ATRP). The structure and properties of the copolymer were analyzed using infrared spectroscopy, gel permeation chromatography, nuclear magnetic resonance (1H‐NMR, 13C‐NMR), thermogravimetry, and differential scanning calorimetry. The kinetic plot for the ATRP of methyl methacrylate using poly(L ‐lactic acid) (PLLA) as the initiator shows that the reaction time increases linearly with ln[M]0/[M]. The results indicate that it is possible to achieve grafted chains with well‐defined molecular weights, and block copolymers with narrowed molecular weight distributions. The thermal stability of PLLA is improved by copolymerization. A new wash‐extraction method for removing copper from the ATRP has also exhibits satisfactory results. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

17.
Three types of pegylated amphiphilic copolymers of poly(δ‐valerolactone) (PVL) were copolymerized with methoxy poly(ethylene glycol) (MePEG) and poly(ethylene glycol) (PEG4000 and PEG10,000), respectively. Pegylation of PVL allowed copolymers possessing amphiphilic property and efficiently self‐assembled to form micelles with a low critical micelle concentration (CMC) in the range of 10?7–10?8M. The average molecular weight of copolymers was in the range of 10,000–20,000 Da, and the polydispersity of copolymers was about 1.7–1.8. Higher mobility of low molecular weight PEG (i.e., MePEG and PEG4000) than high molecular weight PEG10,000 allowed valerolactone ring opening more efficient in terms of PVL/MePEG and PVL/PEG4000 copolymers possessing longer chain length in hydrophobic domain. Pegylated PVL with low CMC and triblock structure was preferred to encapsulate drug during micelle formation. Although all of these amphiphilic copolymers exhibited controlled release character, the micelles formed by triblock copolymer possessed a more stable core‐shell conformation than that by diblock copolymer, and resulted in the release of drug from triblock micelles slower than that from diblock micelles. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1836–1841, 2006  相似文献   

18.
A block copolymer based on poly(γ‐benzyl‐L ‐glutamate) (PBLG) as the hydrophobic part and poly(ethylene oxide) (PEO) as the hydrophilic part was synthesized and characterized. PBLG/PEO/PBLG (GEG) block copolymer nanoparticles were prepared using the dialysis technique. Fluorescence spectroscopy measurement suggested that GEG block copolymers were associated in water to form polymeric micelles and the critical micelle concentration (CMC) value of the GEG‐50 block copolymer was 0.0084 g/L. Particle‐size distribution of the GEG‐50 block copolymer based on the number average was 34.9 ± 17.6 nm. Also, the particle size and drug‐loading contents of GEG nanoparticles were significantly changed with the initial solvent used. From transmission electron microscope (TEM) observations, the GEG polymeric micelle was a nice spherical shape and the sizes ranged from approximately 20–60 nm in diameter. Results from assessing the drug‐loading contents against the initial solvent showed that the use of tetrahydrofuran (THF) or 1,4‐dioxane as the initial solvent resulted in higher drug‐loading contents than those of other solvents. In the drug‐release studies, the higher the molecular weight of the polymer and drug‐loading contents, the slower the drug release. Also, the initial solvent used was significantly affected not only in the drug‐loading contents but also in the drug‐release kinetics. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 1115–1126, 2000  相似文献   

19.
A new methacrylic monomer, 4‐(2‐thiazolylazo)phenylmethacrylate (TPMA) was synthesized. Copolymerization of the monomer with methyl methacrylate (MMA) was carried out by free radical polymerization in THF solution at 70 ± 0.5°C, using azobisisobutyronitrile (AIBN) as an initiator. The monomer TPMA and the copolymer poly(TPMA‐co‐MMA) were characterized by Fourier transform infrared (FTIR), 1H nuclear magnetic resonance (NMR), and elemental analysis methods. The polydispersity index of the copolymer was determined using gel permeation chromatography (GPC). Thermogravimetric analysis (TGA) of the copolymer performed in nitrogen revealed that the copolymer was stable to 270°C. The glass transition temperature (Tg) of the copolymer was higher than that of PMMA. The copolymer with a pendent aromatic heterocyclic group can be dissolved in common organic solvents and shows a good film‐forming ability. Both the monomer TPMA and the copolymer poly (TPMA‐co‐MMA) have bright colors: orange and yellow, respectively. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2152–2157, 2007  相似文献   

20.
A novel A2BA2‐type thermosensitive four‐armed star block copolymer, poly(N‐isopropyl acrylamide)2b‐poly(lactic acid)‐b‐poly(N‐isopropyl acrylamide)2, was synthesized by atom transfer radical polymerization and characterized by 1H‐NMR, Fourier transform infrared spectroscopy, and size exclusion chromatography. The copolymers can self‐assemble into nanoscale spherical core–shell micelles. Dynamic light scattering, surface tension, and ultraviolet–visible determination revealed that the micelles had hydrodynamic diameters (Dh) below 200 nm, critical micelle concentrations from 50 to 55 mg/L, ζ potentials from ?7 to ?19 mV, and cloud points (CPs) of 34–36°C, depending on the [Monomer]/[Macroinitiator] ratios. The CPs and ζ potential absolute values were slightly decreased in simulated physiological media, whereas Dh increased somewhat. The hydrophobic camptothecin (CPT) was entrapped in polymer micelles to investigate the thermo‐induced drug release. The stability of the CPT‐loaded micelles was evaluated by changes in the CPT contents loaded in the micelles and micellar sizes. The MTT cell viability was used to validate the biocompatibility of the developed copolymer micelle aggregates. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 4137–4146, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号