首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(vinyl alcohol) (PVA) networks cross-linked by inorganic nanofillers-boehmite (AlOOH) nanowires via strong hydrogen bonding was prepared by a facile strategy. These PVA-AlOOH composites displayed significantly enhanced mechanical and thermal properties due to the excellent mechanical property and high heat resistant of AlOOH nanowires, as well as the strong hydrogen bonding formed between PVA and AlOOH. Interestingly, it was worth mentioning that the PVA-AlOOH composites exhibited excellent shape memory behavior. The strong hydrogen bonding between PVA matrix and AlOOH nanowires acted as the hard segments to maintain the permanent shape, while the weak one between PVA chains served as switching segments to fix the temporary shape and recover to the permanent shape. This physical cross-linked system provided a simple and efficient strategy to obtain smart shape memory materials.  相似文献   

2.
高分子量聚醋酸乙烯酯的醇解研究   总被引:1,自引:0,他引:1  
探讨了催化剂浓度、醇解温度和反应时间等对高分子量聚醋酸乙烯酯醇解的影响,得出高分子量聚醋酸乙烯酯醇解的适合条件。  相似文献   

3.
E El Shafee 《Polymer》2002,43(3):921-927
The miscibility of atactic poly(epichlorohydrin) (aPECH) with poly(vinyl acetate) (PVAc) was examined under two different conditions: (i) in dilute solution, using vicometeric measurements and (ii) as cast films, using differential scanning calorimetric (DSC) and FT-infrared spectroscopy. Phase separation on heating, i.e. lower critical solution temperature (LCST) behavior of the aPECH/PVAc blends was examined by the measurement of transmitted light intensity against temperature. From viscosity measurements, the Krigbaum-Wall polymer-polymer interaction (ΔB) was evaluated. The DSC results show that the aPECH/PVAc blends are miscible as evidenced by the observation of a single composition-dependent glass-transition temperature (Tg) which is well described by the Couchman and Gordon Taylor models. The Flory-Huggins interaction parameter (χ12) calculated from the Tg-method was negative and equal to −0.01, indicating a relatively low interaction strength. The FT-IR results match very well with those of DSC. The cloud point phenomenon is thermodynamically driven but phase separation, once taken place, is diffusion controlled in normal accessible time.  相似文献   

4.
The results of the miscibility between the chemically similar polymers poly(methyl methacrylate) (PMMA) and poly(vinyl acetate) (PVAc) published so far show inconsistent statements concerning miscibility. The problems may be due to differences in molecular weights, tacticity, and preparation methods of the polymers. This investigation was carried out by using either chloroform or tetrahydrofuran (THF) as solvent to prepare the blends, because to our knowledge, nobody has reported any tacticity effect of PMMA on the miscibility with PVAc. Therefore, in this article, different tactic PMMAs were used to mix with PVAc and their miscibility was studied calorimetrically. The results showed little effect of solvent and tacticity. PMMA and PVAc were determined to be almost completely immiscible because of the observation of two Tg's. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 35–39, 2004  相似文献   

5.
Diffusivities of methyl acetate, methanol and water in poly(vinyl acetate) and fully and partially hydrolyzed poly(vinyl alcohol) have been measured by capillary column inverse gas chromatography and/or gravimetric sorption. Data from the literature have been used when available for comparison. Overall the diffusivities show good consistency in terms of their temperature and concentration dependences. The free‐volume model has been applied to all the data with excellent results. In most cases the dramatic changes in diffusivities with temperature and concentration can be captured using only a few experimental data points and two regression parameters. This demonstrates that the free‐volume theory is a valuable tool for the design of equipment for processing and devolatilization of polymer ? solvent systems. © 2013 Society of Chemical Industry  相似文献   

6.
Triple one-way and two-way shape memory polymers (1W-SMPs and 2W-SMPs) are highly desirable for many practical applications due to the multiple shape transformation. In this work, the blend with co-continuous structure is fabricated based on poly(ethylene-co-vinyl acetate) (EVA) and poly(ε-caprolactone) (PCL), which shows excellent triple one-way and two-way shape memory properties. It is found that the blends have two independent crystallization peaks and two independent melting peaks. With the increase of dicumyl peroxide (DCP) content, the crystallization temperature, melting temperature, and crystallinity of both EVA and PCL in the blends gradually decreases. The blends show great dual and triple one-way shape memory property, and the phenomena of elongation induced by oriented crystallization and contraction induced by melting are clearly seen. Moreover, the blends exhibit remarkable and recyclable triple two-way shape memory performance, with an average shape recovery magnitude of 97.3% and an average actuation magnitude of 50.6%. In terms of the excellent triple one-way and two-way shape memory performance, the EVA/PCL blends may have potential applications in the fields of soft robotics, actuators, and cranes. The new preparation method of triple 2W-SMPs can be used to fabricate other triple 2W-SMPs with commercial polymers.  相似文献   

7.
A sample of poly(vinyl chloride) (PVC) and a polar plasticizer consisting of dioctylphthalate (DOP) and triisopropylphenylphosphate (TIPPP) was prepared and found to possess some electrical conductivity. Different samples of PVC compositions were formulated from the PVC-DOP-TIPPP system and also variable proportions of the conductive materials polyaniline or the Ni salt of ethylene glycol bisadipate ester. Dibutyltindilaurate as a heat stabilizer, titanium oxide as a filler, and sandorin red 20 pigment were added. The effect of the structure of polyaniline and Ni adipate ester on the electrical and mechanical properties of the PVC–DOP–TIPPP system was studied to obtain a semiconductive plasticized PVC with good mechanical properties. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 685–693, 1998  相似文献   

8.
High-molecular weight (HMW) poly(vinyl alcohol) (PVA) was prepared via an emulsifier-free emulsion polymerization of vinyl acetate (VAc) using a redox initiation system in low temperatures, and the subsequent saponification with potassium hydroxide in methanol. The effect of the polymerization conditions on the conversion, molecular weight, and branching degree was investigated. PVA with maximum viscosity-average degree of polymerization (DP) of 8270 could be prepared by saponification of poly(vinyl acetate) (PVAc), with DP of 10,660 obtained at temperature of 10°C, monomer concentration of 30%, potassium persulfate molar ratio to monomer of 1/2000, agitation speed of 160 rpm. The conversion was above 90%. From the emulsifier-free emulsion polymerization of VAc in low temperature, PVAc with HMW and high linearity was effectively prepared, which might be useful for the preparation of high-strength and high-modulus PVA fiber. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

9.
Fibrous membranes of cellulose acetate (CA), poly(vinyl pyrrolidone) (PVP) and composite membranes of these polymers, were obtained by the electrospinning method. Using systematic method, the optimal conditions for preparation of fibrous membranes were found. Both CA and PVP a concentration of 8% weight was found. The CA was dissolved in a acetone:water solution, volume ratio 80 : 20 and the PVP is dissolved in ethanol:water solution, ratio volume 85 : 15. The flow rate for both polymers was 1.5 mL h?1. The same applied voltage value and the distance between the needle and collection plate were for polymer both, 15 kV and 15 cm respectively. The morphology of fibrous membranes and composite membranes were evaluated by scanning electron microscopy (SEM). The CA fibers showed ribon morphology, while the PVP fibers were cilindric, in both cases with diameters in the micrometer range. Thermogravimetric analysis showed that CA had a complete degradation to 445°C, while the fibrous membranes PVP required a value of temperature for degradation of up to 571°C. Fibrous composite membrane PVP/CA/PVP shows a higher value of strain at break (%), and a lower value of tensile strength (MPa) compared to CA/PVP/CA. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

10.
Poly(vinyl acetate) PVAc, in nanolatices with 10% polymer content, prepared by microemulsion polymerization was crosslinked by gamma and UV radiation. PVAc colloidal nanoparticles (average diameter, Dp = 58 nm) had Mw = 562,000 g/mol and about 95% conversions. PVAc nanolatices irradiated by gamma rays (1–13 kGy) at room temperature without crosslinking agent and by UV light (30–300 s exposure times) in the presence of divinylbenzene and allyl methacrylate showed crosslinking of up to 96% (high gel content), Dp < 100 nm and did not degrade as shown by FTIR spectroscopy. DSC and TGA characterization of irradiated PVAc samples indicated that Tg temperatures increased from 28°C for PVAc to 42°C and 39°C for UV and gamma rays crosslinked PVAc, respectively, whereas 10% weight losses occurred at 261°C for uncrosslinked PVAc and at 320 and 313°C for UV and gamma rays crosslinked PVAc. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

11.
胡冬冬  包磊  刘涛  郎美东  赵玲 《化工学报》2018,69(2):555-562
采用多尺度模拟和实验结合研究了乙醇、丙酮、正庚烷等共溶剂的加入对超临界二氧化碳(CO2)溶剂体系的影响,通过改善溶剂-溶剂和溶剂-溶质相互作用增强聚醋酸乙烯酯(PVAc)与CO2的相容性。量子力学从头算结果表明,3种共溶剂中乙醇与CO2的相互作用最强,丙酮次之,正庚烷最弱。分子动力学模拟也表明在相同共溶剂含量下,乙醇对溶剂体系溶解度参数的改善最为明显,超临界CO2-乙醇体系与PVAc链的相互作用更强,有助于提高PVAc与溶剂的相容性。这是由于乙醇本身的溶解度参数较大,且与CO2形成氢键作用,从而大幅增强了其与CO2的相互作用。浊点压力实验证实了共溶剂的加入增强了超临界CO2体系与PVAc的相容性,乙醇的加入对PVAc浊点压力的降低最为有效,且随着共溶剂含量的增加,PVAc在溶剂中的溶解能力增强。  相似文献   

12.
The poly(vinyl acetate) (PVAC) film was obtained by electropolymerization on the copper electrode using cyclic voltammetry performed in mixed electrolyte based on water/ethyl alcohol/acetic acid containing vinyl acetate (VAc) and benzoyl peroxide as polymerization initiator. The coatings were characterized by optical microscopy, scanning electron microscopy (SEM) and infrared (IR) spectroscopy. The corrosion was induced in hydrochloric acid solution using potentiodynamic measurements and electrochemical impedance spectroscopy (EIS). The microscopic and SEM images revealed the PVAC coating formation and IR spectroscopy confirmed that it exhibits the same characteristic bands as a standard PVAC sample. From the potentiodynamic polarization, the PVAC protective performance of 78% was computed. The EIS measurements showed the occurrence of the surface adsorbed layer with a higher impedance response to the frequency and a phase angle maximum shifted to lower values than those of uncoated samples. In addition, the VAc electropolymerization mechanism was discussed and the PVAC adsorption mechanism on the copper surface was proposed. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47320.  相似文献   

13.
ABSTRACT

In this study, polythiophene and poly(dimethylsiloxane)/poly(vinyl acetate)/polythiophene ternary composites were synthesized. The new ternary composites obtained in powder and film forms were characterized using various techniques. Magnetic properties of all the materials were analyzed by Gouy balance measurements, and it was found that their conductivity mechanism is of polaron nature. The surface structure, surface roughness, and thermal properties of the prepared samples were identified by Scanning Electron Microscopy, Atomic Force Microscopy, and Thermogravimetric Analysis, respectively. The tensile-tension test studies were performed for mechanical properties. The PDMS/PVAc/PT (6%) composite demonstrated about 50% of the maximum strain value (%) of vulcanized natural rubber.  相似文献   

14.
Scanning electron microscopy has been used to observe morphology in styrenated polyester resins containing poly(vinyl acetate) (PVA). Resins containing 8% PVA form composite spherical particles which occupy 35 vol% of the total material. It is concluded that these particles consist of resin sub-inclusions embedded in the continuous matrix of polyester resin. Increasing the PVA content to 16% results in a phase inversion: PVA forms the matrix, and the resin is present as spherical particles. These observations are interpreted with the aid of a ternary diagram.  相似文献   

15.
M. Konno  Z.-Y. Wang  S. Saito   《Polymer》1990,31(12):2329-2332
A dynamical study was made on demixing of an immiscible polymer blend, whose specimens were prepared by solvent casting and had very finely phase separated structures in the initial stage of the demixing. Light scattering experiments showed the applicability of a scaling rule to the later stage of the growth of phase separation structures. The demixing can be described by a scaling theory proposed by Furukawa.  相似文献   

16.
Poly(vinyl acetate) (PVAc)/poly(ethylene oxide) (PEO) blends were prepared by casting from either benzene or chloroform. The solvent effects on the crystallization behavior and thermodynamic properties of the blends were studied by the differential scanning calorimeter (DSC). Two grades of PEO with different molecular weights (PEO200 with Mw = 200,000 g/mol and PEO2 with Mn = 2000 g/mol) were used in this work. The thermal analysis revealed that the blends cast from either benzene or chloroform were miscible in the molten state. The crystallization of PEO in the benzene-cast blends was more easily suppressed than it was in the chloroform-cast blends. Furthermore, the benzene-cast blends showed a greater negative value of Flory-Huggins interaction parameter than those cast from chloroform in the PVAc/PEO200 poly-blend system. It was supposed that the benzene-cast blends had more homogeneous morphology. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 64: 411–421, 1997  相似文献   

17.
Poly(vinyl alcohol) (PVA) was dissolved in the water to make a 10 wt % aqueous solution, and polydimethylsiloxane (PDMS) was mixed with 1 wt % 2,2‐dimethyl‐2‐phenylacetophenone (DMPAP) and 0.5 mol % methylenebisacrylamide (MBAAm) in isopropyl alcohol. This mixture was added to a PVA aqueous solution and heated at 90°C for 7 h. Various crosslinked networks were prepared at different molar ratios of PVA/PDMS (1:1, 1:3, and 3:1). The characterization of PVA/PDMS crosslinked networks was determined by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), a universal testing machine (UTM), and the equilibrium water content (EWC). The DSC melting endotherms showed, at 219.49°C, a sharp endothermic peak of PVA, and PVA/PDMS crosslinked networks had melting peaks close to this point. The value of EWC increased with the content of PVA in the crosslinked networks, simultaneously depending on the temperature. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 957–964, 2002  相似文献   

18.
The enzymatic degradation of poly(D ,L ‐lactide) (PLA) was investigated using two different lipases, Novozym 435 and Lipolase. The optimum temperature was 50°C for the enzymatic degradation of PLA. The effect of various solvents on the degradation of PLA was investigated at 50°C using Novozym 435, and toluene was found to be the best solvent among the solvents investigated. The enzymatic degradation of the blends of PLA and PVAc was investigated at 50°C in toluene. The enzymatic degradation of the blends of PLA and PVAc showed that there is an interaction between the polymers during degradation, which results in the reduction of degradation rate of both polymers in the blend. A continuous distribution model was used to determine the rate coefficients for polymer degradation. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 657–680 2006  相似文献   

19.
The Hansen solubility parameters (HSPs ) of two ethylene–vinyl acetate (EVA ) copolymers (with 18 and 33 wt% of vinyl acetate) and their corresponding homopolymers (polyethylene, PE , and poly(vinyl acetate), PVAc ) have been studied at various temperatures, employing the previously obtained Flory–Huggins parameters. From these latter values, a procedure based on the Hansen solubility spheres theory was employed to determine the HSPs , as well as the radius of interaction. The procedure was validated with literature data, with deviations of around 3%. The HSP values (dispersion, polar and association terms, respectively, all in MPa1 /2) at 333.15 K are 14.84, ?3.88 and 1.78 for PE , 17.65, ?1.24 and 2.76 for EVA410 (with 18 wt% of vinyl acetate), 17.52, 0.15 and 3.61 for EVA460 (with 33 wt% of vinyl acetate) and 19.45, 10.59 and 5.76 for PVAc . The main characteristic of the obtained HSP values is that the high polar term of PVAc tends to increase the solubility character of the pure PE , and thus the EVA copolymers, allowing them to solubilize dispersion and polar compounds. Finally, it was also demonstrated that it is possible to predict the HSPs of EVA copolymers using the vinyl acetate content and the HSPs of pure PE and PVAc as input data. © 2017 Society of Chemical Industry  相似文献   

20.
The requirements for PVC suspension resin have changed considerably in the last few years, so much so that few companies have products on their ranges that are more than 4 or 5 years old. The suspending agent has a crucial influence on the morphology of the resin, so the changes in resin characteristics have largely been achieved by changes in the suspending agent systems. After a brief review of the mechanism of PVC suspension polymerisation, the properties of polymers made using PVOH suspending agents are related to changes in the latter. The effect of variations in PVAc degree of hydrolysis and viscosity are related to changes in surface tension. Methods of achieving higher porosity by using low hydrolysis co-suspending agents are described. It is shown that higher bulk densities can be achieved by delayed addition of the PVOH. Levels of conjugated unsaturation and copolymer distributions are also shown to have important influences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号