首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An approach to achieve confined crystallization of ferroelectric semicrystalline poly(vinylidene fluoride) (PVDF) was investigated. A novel polydimethylsiloxane‐block‐poly(methyl methacrylate)‐block‐polystyrene (PDMS‐b‐PMMA‐b‐PS) triblock copolymer was synthesized by the atom‐transfer radical polymerization method and blended with PVDF. Miscibility, crystallization and morphology of the PVDF/PDMS‐b‐PMMA‐b‐PS blends were studied within the whole range of concentration. In this A‐b‐B‐b‐C/D type of triblock copolymer/homopolymer system, crystallizable PVDF (D) and PMMA (B) middle block are miscible because of specific intermolecular interactions while A block (PDMS) and C block (PS) are immiscible with PVDF. Nanostructured morphology is formed via self‐assembly, displaying a variety of phase structures and semicrystalline morphologies. Crystallization at 145 °C reveals that both α and β crystalline phases of PVDF are present in PVDF/PDMS‐b‐PMMA‐b‐PS blends. Incorporation of the triblock copolymer decreases the degree of crystallization and enhances the proportion of β to α phase of semicrystalline PVDF. Introduction of PDMS‐b‐PMMA‐b‐PS triblock copolymer to PVDF makes the crystalline structures compact and confines the crystal size. Moreover, small‐angle X‐ray scattering results indicate that the immiscible PDMS as a soft block and PS as a hard block are localized in PVDF crystalline structures. © 2019 Society of Chemical Industry  相似文献   

2.
Polystyrene terminated with benzyl alcohol units was employed as a macroinitiator for ring‐opening polymerization of ε‐caprolactone and L ‐lactide to yield AB‐ and ABC‐type block copolymers. Even though there are many reports on the diblock copolymers of poly(styrene‐block‐lactide) and poly(styrene‐block‐lactone), this is the first report on the poly(styrene‐block‐lactone‐block‐lactide) triblock copolymer consisting of two semicrystalline and degradable segments. The triblock copolymers exhibited twin melting behavior in differential scanning calorimetry (DSC) analysis with thermal transitions corresponding to each of the lactone and lactide blocks. The block derived from ε‐caprolactone also showed crystallization transitions upon cooling from the melt. In the DSC analysis, one of the triblock copolymers showed an exothermic transition well above the melting temperature upon cooling. Thermogravimetric analysis of these block copolymers showed a two‐step degradation curve for the diblock copolymer and a three‐step degradation for the triblock copolymer with each of the degradation steps associated with each segment of the block copolymers. The present study shows that it is possible to make pure triblock copolymers with two semicrystalline segments which also consist of degradable blocks. Copyright © 2009 Society of Chemical Industry  相似文献   

3.
Enzymatic polymerization in a non‐natural environment is of interest as an environmentally friendly methodology as an alternative to the use of conventional chemical organometallic catalysts. Chemo‐enzymatic synthesis of the AB‐type diblock copolymer poly(2,2,2‐trichloroethyl 10‐hydroxydecanate)‐block‐polystyrene (PHD‐b‐PSt) was carried out by combining enzymatic self‐condensation polymerization (eSCP) and atom‐transfer radical polymerization (ATRP). Biocatalyst Novozyme 435 was successful in catalyzing the eSCP of a novel ω‐hydroxyester, i.e. 2,2,2‐trichloroethyl 10‐hydroxydecanate. The resulting ? CCl3‐terminated PHD initiated the ATRP of styrene, a ‘living’/controlled radical polymerization. The analysis of the hydrolysate from the copolymer proved the presence of a block copolymer structure. In addition, the well‐defined diblock copolymer PHD‐b‐PSt self‐assembled into nanoscale micelles in aqueous solution. The chemo‐enzymatic synthesis of diblock copolymer PHD‐b‐PSt was achieved by the combination of eSCP and ATRP. The structures and composition of the block copolymer were characterized by means of NMR, infrared and gel permeation chromatography measurements. Differential scanning calorimetry analysis showed that a microphase‐separation structure was formed in the copolymer, which was caused by the crystallization of the PHD segments. As investigated with atomic force microscopy and dynamic light scattering, these micelles had a mean diameter and a spherical shape. To our knowledge, this is the first example of a chemo‐enzymatic synthesis based on eSCP and ATRP. Copyright © 2007 Society of Chemical Industry  相似文献   

4.
A thermosensitive amphiphilic triblock copolymer, poly(d,l ‐lactide) (PLA)‐b‐poly(N‐isopropyl acrylamide) (PNIPAAM)‐b‐PLA, was synthesized by the ring‐opening polymerization of d,l ‐lactide; the reaction was initiated from a dihydroxy‐terminated poly(N‐isopropyl acrylamide) homopolymer (HO‐PNIPAAM‐OH) created by radical polymerization. The molecular structure, thermosensitive characteristics, and micellization behavior of the obtained triblock copolymer were characterized with Fourier transform infrared spectroscopy, 1H‐NMR, gel permeation chromatography, dynamic light scattering, and transmission electron microscopy. The obtained results indicate that the composition of PLA‐b‐PNIPAAM‐b‐PLA was in good agreement with what was preconceived. This copolymer could self‐assemble into spherical core–shell micelles (ca. 75–80 nm) in aqueous solution and exhibited a phase‐transition temperature around 26 °C. Furthermore, the drug‐delivery properties of the PLA‐b‐PNIPAAM‐b‐PLA micelles were investigated. The drug‐release test indicated that the synthesized PLA‐b‐PNIPAAM‐b‐PLA micelles could be used as nanocarriers of the anticancer drug adriamycin (ADR) to effectively control the release of the drug. The drug‐delivery properties of PLA‐b‐PNIPAAM‐b‐PLA showed obvious thermosensitive characteristics, and the release time of ADR could be extended to 50 h. This represents a significant improvement from previous PNIPAAM‐based drug‐delivery systems. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45304.  相似文献   

5.
BACKGROUND: Biodegradable block copolymers have attracted particular attention in both fundamental and applied research because of their unique chain architecture, biodegradability and biocompatibility. Hence, biodegradable poly[((R )‐3 ‐hydroxybutyrate)‐block‐(D ,L ‐lactide)‐block‐(ε‐caprolactone)] (PHB‐PLA‐PCL) triblock copolymers were synthesized, characterized and evaluated for their biocompatibility. RESULTS: The results from nuclear magnetic resonance spectroscopy, gel permeation chromatography and thermogravimetric analysis showed that the novel triblock copolymers were successfully synthesized. Differential scanning calorimetry and wide‐angle X‐ray diffraction showed that the crystallinity of PHB in the copolymers decreased compared with methyl‐PHB (LMPHB) oligomer precursor. Blood compatibility experiments showed that the blood coagulation time became longer accompanied by a reduced number of platelets adhering to films of the copolymers with decreasing PHB content in the triblocks. Murine osteoblast MC3T3‐E1 cells cultured on the triblock copolymer films spread and proliferated significantly better compared with their growth on homopolymers of PHB, PLA and PCL, respectively. CONCLUSION: For the first time, PHB‐PLA‐PCL triblock copolymers were synthesized using low molecular weight LMPHB oligomer as the macroinitiator through ring‐opening polymerization with D ,L ‐lactide and ε‐caprolactone. The triblock copolymers exhibited flexible properties with good biocompatibility; they could be developed into promising biomedical materials for in vivo applications. Copyright © 2008 Society of Chemical Industry  相似文献   

6.
In this contribution, we reported to utilize polystyrene‐block‐polybutadiene‐block‐polystyrene (PS‐b‐PB‐b‐PS), a commercial triblock copolymer to toughen epoxy thermosets. First, a PS‐b‐PB‐b‐PS triblock copolymer was chemically modified with hydroboration‐oxidation reaction, with which the midblock was hydroxylated whereas the endblocks remained unaffected. It was found that the degree of hydroxylation was well controlled. One of the hydroxylated PS‐b‐PB‐b‐PS samples was then used as the macromolecular initiator to synthesize a poly(ε‐caprolactone)‐grafted PS‐b‐PB‐b‐PS via the ring‐opening polymerization. It was found that the PS‐b‐PB‐b‐PS with poly(ε‐caprolactone) grafts can be successfully employed to nanostructure epoxy thermosets; the “core‐shell” microdomains composed of PB and PS were generated in the nanostructured thermosets. The nanostructured thermosets displayed improved fracture toughness. POLYM. ENG. SCI., 59:2387–2396, 2019. © 2019 Society of Plastics Engineers  相似文献   

7.
A polystyrene (PS)‐b‐polylactide (PLA) block copolymer was prepared from the combination of atom transfer radical polymerization and ring‐opening polymerization with commercially available 2,2,2‐tribromoethanol as a dual initiator in a sequential two‐step procedure. Hydroxyl‐terminated polystyrene (PS‐OH)s with various molecular weights were first prepared with polydispersity indices lower than 1.3; these provided valuable macroinitiators for the polymerization of D,L ‐lactide. A block copolymer with a composition allowing the formation of hexagonally packed PLA cylinders in a PS matrix was then obtained. The PS‐b‐PLA thin films revealed, after vapor solvent annealing, a hexagonally packed organization of the PLA cylinders, which was oriented perpendicularly to the surface of the film. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
Polystyrene (PS)‐b‐polylactide (PLA) diblock copolymers with different molecular weights and fractions were synthesized through a combination of living anionic polymerization and controlled ring‐opening polymerization. Then, the PS–PLA films were guided to phase‐separate by self‐assembly into different morphologies through casting solvent selection, solvent evaporation, and thermal and solvent‐field regulation. Finally, perpendicularly oriented PS–PLA films were used as precursors for PS membranes with an ordered periodic nanoporous structure; this was achieved by the selective etching of the segregated PLA domains dispersed in a continuous matrix of PS. Testing techniques, including IR, 1H‐NMR, gel permeation chromatography, scanning electron microscopy (SEM), and atomic force microscopy (AFM), were used to determine the chemical structure of the PS–PLA copolymer and its film morphology. AFM images of the self‐assembled PS‐PLA films indicate that vertical tapers of the PLA domains were generated among PS continuum when either toluene or tetrahydrofuran was used as the annealing solvent. The SEM images certified that the chemical etching of the PLA component from the self‐assembled PS–PLA films led to a long‐range‐ordered array of hexagonally packed nanoporous membranes with a diameter about 500 nm and a center‐to‐center distance of 1700 nm. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39638.  相似文献   

9.
Mono‐ and bifunctional poly(phenylene oxide) (PPO) macroinitiators for atom transfer radical polymerization (ATRP) were prepared by esterification of mono‐ and bishydroxy telechelic PPO with 2‐bromoisobutyryl bromide. The macroinitiators were used for ATRP of styrene to give block copolymers with PPO and polystyrene (PS) segments, namely PPO‐block‐PS and PS‐block‐PPO‐block‐PS. Various ligands were studied in combination with CuBr as ATRP catalysts. Kinetic investigations revealed controlled polymerization processes for certain ligands and temperature ranges. Thermal analysis of the block copolymers by means of DSC revealed only one glass transition temperature as a result of the compatibility of the PS and PPO chain segments and the formation of a single phase; this glass transition temperature can be adjusted over a wide temperature range (ca 100–199 °C), depending on the composition of the block copolymer. Copyright © 2005 Society of Chemical Industry  相似文献   

10.
BACKGROUND: Molecular brushes are types of macromolecules with densely grafted side chains on a linear backbone. The synthesis of macromolecular brushes has stimulated much interest due to their great potential in applications in various fields. Poly(L ‐lactide)–poly(ethylene glycol) methyl ether methacrylate (PLLA‐PEOMA) comb‐block‐comb molecular brushes with controlled molecular weights and narrow molecular weight distributions were successfully synthesized based on a combination of activator generated by electron transfer (AGET) atom transfer radical polymerization (ATRP) and ring‐opening polymerization. The synthetic route is a combination of the ‘grafting through’ method for AGET ATRP of the PEOMA comb block and the ‘grafting from’ method for the synthesis of the PLLA comb block. Poly(2‐hydroxyethyl methacrylate) (PHEMA) was synthesized by ATRP, and PLLA side chains and PEOMA side chains were grown from the backbones and the terminal sites of PHEMA, respectively. RESULTS: The number‐average degrees of polymerization of PLLA chains and poly[poly(ethylene glycol) methyl ether methacrylate] (PPEOMA) comb blocks were determined using 1H NMR spectroscopy, and the apparent molecular weights and molecular weight distributions of the brush molecules were measured using gel permeation chromatography. The crystallization of the components in the comb‐block‐comb copolymers was also investigated. The crystallization of PLLA side chains is influenced by PLLA chain length and the content of PPEOMA in the molecular brushes. The comb‐block‐comb copolymer composed of hydrophobic PLLA and hydrophilic PEOMA can self‐assemble into a micellar structure in aqueous solution. CONCLUSION: A combination of AGET ATRP and ring‐opening polymerization is an efficient method to prepare well‐defined comb‐block‐comb molecular brushes. The physical properties of the molecular brushes are closely related to their structures. Copyright © 2009 Society of Chemical Industry  相似文献   

11.
The morphologies of poly(styrene‐block‐di‐methylsiloxane) (PS‐b‐PDMS) copolymer thin films were analyzed via atomic force microscopy and transition electron microscopy (TEM). The asymmetric copolymer thin films spin‐cast from toluene onto mica presented meshlike structures, which were different from the spherical structures from TEM measurements. The annealing temperature affected the surface morphology of the PS‐b‐PDMS copolymer thin films; the polydimethylsiloxane (PDMS) phases at the surface were increased when the annealing temperature was higher than the PDMS glass‐transition temperature. The morphologies of the PS‐b‐PDMS copolymer thin films were different from solvent to solvent; for thin films spin‐cast from toluene, the polystyrene (PS) phase appeared as pits in the PDMS matrix, whereas the thin films spin‐cast from cyclohexane solutions exhibited an islandlike structure and small, separated PS phases as protrusions over the macroscopically flat surface. The microphase structure of the PS‐b‐PDMS copolymer thin films was also strongly influenced by the different substrates; for an asymmetric block copolymer thin film, the PDMS and PS phases on a silicon substrate presented a lamellar structure parallel to the surface at intervals. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1010–1018, 2007  相似文献   

12.
The aim of the work reported was to synthesize a series of double‐hydrophilic poly(methacrylic acid)‐block‐poly(ethylene glycol)‐block‐poly(methacrylic acid) (PMAA‐b‐PEG‐b‐PMAA) triblock copolymers and to study their self‐assembly behavior. These copolymeric self‐assembly systems are expected to be potential candidates for applications as carriers of hydrophilic drugs. Bromo‐terminated difunctional PEG macroinitiators were used to synthesize well‐defined triblock copolymers of poly(tert‐butyl methacrylate)‐block‐poly(ethylene glycol)‐block‐poly(tert‐butyl methacrylate) via reversible‐deactivation radical polymerization. After the removal of the tert‐butyl group by hydrolysis, double‐hydrophilic PMAA‐b‐PEG‐b‐PMAA triblock copolymers were obtained. pH‐sensitive spherical micelles with a core–corona structure were fabricated by self‐assembly of the double‐hydrophilic PMAA‐b‐PEG‐b‐PMAA triblock copolymers at lower solution pH. Transmission electron microscopy and laser light scattering studies showed the micelles were of nanometric scale with narrow size distribution. Solution pH and micelle concentration strongly influenced the hydrodynamic radius of the spherical micelles (48–310 nm). A possible reason for the formation of the micelles is proposed. Copyright © 2010 Society of Chemical Industry  相似文献   

13.
Biodegradable poly[(2‐methacryloyloxyethyl phosphorylcholine)‐block‐(D ,L ‐lactide)] (PMPC‐b‐PLA) diblock copolymers with various hydrophilic PMPC weight fractions (fPC) will spontaneously self‐assemble into well‐defined vesicles and large compound micelles (LCMs) in water. Transmission electron microscopy, scanning electron microscopy, dynamic light scattering and fluorescence microscopy were used to observe their aggregate morphologies. The degradation of the LCMs was investigated and the loss of molecular weight of PLA blocks was confirmed using 1H NMR analysis. The hydrolysis of PLA increases fPC and consequently shifts the preferred morphology from LCMs to vesicles. Such degradation‐induced morphological transitions mean that the biocompatible and biodegradable LCMs have great application potential in drug delivery. Copyright © 2010 Society of Chemical Industry  相似文献   

14.
Well‐defined poly(dimethylsiloxane)‐block‐poly(methyl methacrylate)‐block‐poly(2,2,3,3,4,4,4‐heptafluorobutyl methacrylate) (PDMS‐b‐PMMA‐b‐PHFBMA) triblock copolymers were synthesized via atom transfer radical polymerization (ATRP). Surface microphase separation in the PDMS‐b‐PMMA‐b‐PHFBMA triblock copolymer films was investigated. The microstructure of the block copolymers was investigated by transmission electron microscopy (TEM) and atomic force microscopy (AFM). Surface composition was studied by X‐ray photoelectron spectroscopy (XPS). The chemical composition at the surface was determined by the surface microphase separation in the PDMS‐b‐PMMA‐b‐PHFBMA triblock copolymer films. The increase of the PHFBMA content could strengthen the microphase separation behavior in the PDMS‐b‐PMMA‐b‐PHFBMA triblock copolymer films and reduce their surface tension. Comparison between the PDMS‐b‐PMMA‐b‐PHFBMA triblock copolymers and the PDMS‐b‐PHFBMA diblock copolymers showed that the introduction of the PMMA segments promote the fluorine segregation onto the surface and decrease the fluorine content in the copolymers with low surface energy. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
The chemoenzymatic synthesis of a novel diblock copolymer consisting of a hydrocarbon block of polycaprolactone (PCL) and an epoxy‐based block of poly(glycidyl methacrylate) (PGMA) was achieved by the combination of enzymatic ring‐opening polymerization (eROP) and atom transfer radical polymerization (ATRP). A trichloromethyl‐terminated PCL macrointiator was obtained via Novozyme 435‐catalyzed eROP of ε‐caprolactone from a bifunctional initiator, 2,2,2‐trichloroethanol, under anhydrous conditions. PCL‐b‐PGMA diblock copolymers were synthesized in a subsequent ATRP of glycidyl methacrylate. The kinetics analysis of ATRP indicated a ‘living’/controlled radical polymerization. The macromolecular structure and thermal properties of the PCL macroinitiator and of the diblock copolymer were characterized using NMR spectroscopy, gel permeation chromatography and differential scanning calorimetry. The well‐defined PCL‐b‐PGMA amphiphilic diblock copolymer self‐assembled in aqueous solution into nanoscale micelles. The size and shape of the resulting micelles were investigated using dynamic light scattering, transmission electron microscopy and tapping‐mode atomic force microscopy. Copyright © 2007 Society of Chemical Industry  相似文献   

16.
Diblock copolymers of poly(L ‐lactide)‐block‐poly(methyl methacrylate) (PLLA‐b‐PMMA) were synthesized through a sequential two‐step strategy, which combines ring‐opening polymerization (ROP) and atom transfer radical polymerization (ATRP), using a bifunctional initiator, 2,2,2‐trichloroethanol. The trichloro‐terminated poly(L ‐lactide) (PLLA‐Cl) with high molecular weight (Mn,GPC = 1–12 × 104 g/mol) was presynthesized through bulk ROP of L ‐lactide (L ‐LA), initiated by the hydroxyl group of the double‐headed initiator, with tin(II) octoate (Sn(Oct)2) as catalyst. The second segment of the block copolymer was synthesized by the ATRP of methyl methacrylate (MMA), with PLLA‐Cl as macroinitiator and CuCl/N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA) as catalyst, and dimethyl sulfoxide (DMSO) was chosen as reaction medium due to the poor solubility of the macroinitiator in conventional solvents at the reaction temperature. The trichloroethoxyl terminal group of the macroinitiator was confirmed by Fourier transform infrared spectroscopy (FTIR) and 1H‐NMR spectroscopy. The comprehensive results from GPC, FTIR, 1H‐NMR analysis indicate that diblock copolymers PLLA‐b‐PMMA (Mn,GPC = 5–13 × 104 g/mol) with desired molecular composition were obtained by changing the molar ratio of monomer/initiator. DSC, XRD, and TG analyses establish that the crystallization of copolymers is inhibited with the introduction of PMMA segment, which will be beneficial to ameliorating the brittleness, and furthermore, to improving the thermal performance. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

17.
Energetic block copolymer of polyglycidylazide‐b‐poly (azidoethyl methacrylate) (GAP‐b‐PAEMA) was synthesized and characterized. Macroinitiator PECH‐Br prepared via the reaction of 2‐bromoisobutyryl bromide with hydroxyl‐terminated polyepichlorohydrin (PECH‐OH) was used to initiate the atom transfer radical polymerization (ATRP) of chloroethyl methacrylate (CEMA). After azidation of the resulting copolymer, energetic copolymer GAP‐b‐PAEMA was obtained. Increase in the molecular weight determined by gel permeation chromatograph (GPC) is in agreement with the formation of block copolymer. Fourier transform infrared spectroscopy (FTIR) shows that the chlorine groups in the block copolymer can be substituted by azide group easily. Thermogravimetric analysis (TGA) shows that degradation of GAP‐b‐PAEMA involves two steps: the instantaneous decomposition of the azide groups followed by progressive scission of the polymer backbone. From differential scanning calorimetry (DSC) analysis, the GAP‐b‐PAEMA copolymer exhibits two glass transition temperatures (Tg) at ?18 and 36°C, suggesting that the synthesized copolymer is a thermoplastic elastomer. This research provides a new method for the synthesis of energetic polymer. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

18.
Self‐assembled thin films of a lamellar forming polystyrene‐block‐poly(d,l )lactide (PS‐b‐PLA) block copolymer (BCP) contain a “reactive” block that can be readily removed to provide a template for substrate pattern formation. Various methods of PLA removal were studied here with a view to develop the system as an on‐chip etch mask for substrate patterning. Solvo‐microwave annealing was used to induce microphase separation in PS‐b‐PLA BCP with a periodicity of 34 nm (Lo) on silicon and silicon on insulator (SOI) substrates. Wet etches based on alkaline and enzymatic solutions were studied in depth. Fourier transform‐infrared (FT‐IR) analysis showed that basic hydrolysis using sodium hydroxide (NaOH) or ammonium hydroxide (NH4OH) solutions resulted in greater PLA removal in comparison to an enzymatic approach using Proteinase K in a Tris‐HCl buffer solution. However, in the enzymatic approach, the characteristic self‐assembled fingerprint patterns were retained with less damage. Comparison to a dry etch procedure using a reactive ion etch (RIE) technique was made. A detailed study of the etch rate of PS and PLA homopolymer and PS‐b‐PLA shows depending on DC bias, the etch selectivity of PLA and PS can be almost doubled from 1.7 at DC bias 145 V to 3 at DC bias 270 V. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40798. Together with Krebs et al., J. Appl. Polym. Sci. (2014) 131 , 40795, doi: 10.1002/app.40795 , this article is part of a Special Issue on Polymers for Microelectronics. The remaining articles appear in J. Appl. Polym. Sci. (2014) volume 131 , issue 24. This note was added on 1st July 2014.  相似文献   

19.
Background: Radical polymerization is used widely to polymerize more than 70% of vinyl monomers in industry, but the control over molecular weight and end group of the resulting polymers is always a challenging task with this method. To prepare polymers with desired molecular weight and end groups, many controlled radical polymerization (CRP) ideas have been proposed over the last decade. Atom transfer radical polymerization (ATRP) is one of the successful CRP techniques. Using ATRP, there is no report on the synthesis of polystyrene‐block‐polyurethane‐block‐polystyrene (PSt‐b‐PU‐b‐PSt) tri‐block copolymers. Hence this paper describes the method of synthesizing these tri‐block copolymers. To accomplish this, first telechelic bromo‐terminated polyurethane was synthesized and used further to synthesize PSt‐b‐PU‐b‐PSt tri‐block copolymers using CuBr as a catalyst and N,N,N,N″,N″‐pentamethyldiethylenetriamine as a complexing agent. Results: The ‘living’ nature of the initiating system was confirmed by linear increase of number‐average molecular weight and conversion with time. A semi‐logarithmic kinetics plot shows that the concentration of propagating radical is steady. The results from nuclear magnetic resonance spectroscopy, gel permeation chromatography and differential scanning calorimetry show that the novel PSt‐b‐PU‐b‐PSt tri‐block copolymers were formed through the ATRP mechanism. Conclusion: For the first time, PSt‐b‐PU‐b‐PSt tri‐block copolymers were synthesized through ATRP. The advantage of this method is that the controlled incorporation of polystyrene block in polyurethane can be achieved by simply changing the polymerization time. Copyright © 2007 Society of Chemical Industry  相似文献   

20.
BACKGROUND: The surface of a substrate which comprises a fibrous material is brought into contact with a type of amphiphilic block copolymer which comprises hydrophilic/hydrophobic polymeric blocks. These amphiphilic copolymers have been synthesized by atom transfer radical polymerization (ATRP) technique. The atom transfer radical polymerization of poly(2,3,4,5,6‐pentafluorostyrene)‐block‐poly(ethylene oxide) (PFS‐b‐PEO) copolymers (di‐ and triblock structures) with various ranges of PEO molecular weights was initiated by a PEO chloro‐telechelic macroinitiator. The polymerization, carried out in bulk and catalysed by copper(I) chloride in the presence of 2,2′‐bipyridine ligand, led to A–B–A amphiphilic triblock and A–B amphiphilic diblock structures. RESULTS: With most of the macroinitiators, the living nature of the polymerizations led to block copolymers with narrow molecular weight distributions (1.09 < Mw/Mn < 1.33) and well‐controlled molecular structures. These block copolymers turned out to be water‐soluble through adjustment of the PEO block content (>90 wt%). Of all the block copolymers synthesized, PFS‐b‐PEO(10k)‐b‐PFS containing 10 wt% PFS was found to retard water absorption considerably. CONCLUSION: The printability of paper treated with the copolymers was evaluated with contact angle measurements and felt pen tests. The adsorption of such copolymers at the solid/liquid interface is relevant to the wetting and spreading of liquids on hydrophobic/hydrophilic surfaces. Copyright © 2009 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号