首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was designed to determine whether the surface modifications of the various poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) [P(3HB‐co‐4HB)] copolymer scaffolds fabricated would enhance mouse fibroblast cells (L929) attachment and proliferation. The P(3HB‐co‐4HB) copolymer with a wide range of 4HB monomer composition (16–91 mol %) was synthesized by a local isolate Cupriavidus sp. USMAA1020 by employing the modified two‐stage cultivation and by varying the concentrations of 4HB precursors, namely γ‐butyrolactone and 1,4‐butanediol. Five different processing techniques were used in fabricating the P(3HB‐co‐4HB) copolymer scaffolds such as solvent casting, salt‐leaching, enzyme degradation, combining salt‐leaching with enzyme degradation, and electrospinning. The increase in 4HB composition lowered melting temperatures (Tm) but increased elongation to break. P(3HB‐co‐91 mol % 4HB) exhibited a melting point of 46°C and elongation to break of 380%. The atomic force analysis showed an increase in the average surface roughness as the 4HB monomer composition increased. The mouse fibroblasts (L929) cell attachment was found to increase with high 4HB monomer composition in copolymer scaffolds. These results illustrate the importance of a detailed characterization of surface architecture of scaffolds to provoke specific cellular responses. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

2.
To develop conjugated polymers with low bandgap, deep HOMO level, and good solubility, a new conjugated alternating copolymer PC‐DODTBT based on N‐9′‐heptadecanyl‐2,7‐carbazole and 5, 6‐bis(octyloxy)‐4,7‐di(thiophen‐2‐yl)benzothiadiazole was synthesized by Suzuki cross‐coupling polymerization reaction. The polymer reveals excellent solubility and thermal stability with the decomposition temperature (5% weight loss) of 327°C. The HOMO level of PC‐DODTBT is ‐5.11 eV, indicating that the polymer has relatively deep HOMO level. The hole mobility of PC‐DODTBT as deduced from SCLC method was found to be 2.03 × 10?4 cm2/Versus Polymer solar cells (PSCs) based on the blends of PC‐DODTBT and [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) with a weight ratio of 1:2.5 were fabricated. Under AM 1.5 (AM, air mass), 100 mW/cm?2 illumination, the devices were found to exhibit an open‐circuit voltage (Voc) of 0.73 V, short‐circuit current density (Jsc) of 5.63 mA/cm?2, and a power conversion efficiency (PCE) of 1.44%. This photovoltaic performance indicates that the copolymer is promising for polymer solar cells applications. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

3.
This paper describes the synthesis of a series of ABA‐type triblock copolymers of trimethylene carbonate and ?‐caprolactone with various molar ratios and analyses the thermal and mechanical properties of the resulting copolymers. The structures of the triblock copolymers were characterized by 1H and 13C nuclear magnetic resonance spectroscopy, FT‐IR spectroscopy and gel permeation chromatography. Results obtained from the various characterization methods proves the successful synthesis of block copolymers of trimethylene carbonate and ?‐caprolactone. The thermal properties of the block copolymers were investigated by differential scanning calorimetry. The Tm and ΔHm values of the copolymers decrease with increasing content of trimethylene carbonate units. Two Tgs were found in the copolymers. Furthermore, both of the Tg values increased with increasing content of trimethylene carbonate units. The mechanical properties of the resulting copolymers were studied by using a tensile tester. The results indicated that the mechanical properties of the block copolymers are related to the molar ratio of trimethylene carbonate and ?‐caprolactone in the copolymers, as well as the molecular weights of the resulting copolymers. The block copolymer with a molar composition of 50/50 possessed the highest tensile stress at maximum and modulus of elasticity. Block copolymers possessing different properties could be obtained by adjusting the copolymer compositions. Copyright © 2004 Society of Chemical Industry  相似文献   

4.
Poly(?‐caprolactone) (PCL)/gelatin (GE) nanofiber scaffolds with varying concentrations of lanthanum chloride (LaCl3, from 0 to 25 mM) were fabricated by electrospinning. The scaffolds were characterized by scanning electron microscopy, contact angle and porosity measurements, mechanical strength tests, and in vitro degradation studies. In vitro cytotoxicity and cell adhesion and proliferation studies were performed to assess the biocompatibility of the scaffolds, and in vivo wound healing studies were conducted to assess scaffold applications in the clinic. All prepared scaffolds were noncytotoxic, and the growth of adipose tissue–derived stem cells on LaCl3‐containing scaffolds was better than on the pure PCL/GE scaffold. Cell proliferation studies showed the greatest cell growth in the PCL/GE/LaCl3 scaffolds. Further, in vivo studies proved that the PCL/GE/LaCl3 scaffolds can promote wound healing. The results suggest that nanofiber scaffolds containing LaCl3 promote cell proliferation and have good biocompatibility, and thus potential for application in the treatment of skin wounds. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46672.  相似文献   

5.
Three‐dimensional fluorinated pentablock poly(l ‐lactide‐co‐ε‐caprolactone)‐based scaffolds were successfully produced by the incorporation of thermally exfoliated graphene oxide (TEGO) as an antimicrobial agent with an electrospinning technique. In a ring‐opening polymerization, the fluorinated groups in the middle of polymer backbone were attached with a perfluorinated reactive stabilizer having oxygen‐carrying ability. The fiber diameter and its morphologies were optimized through changes in TEGO amount, voltage, polymer concentration, and solvent type to obtain an ideal scaffold structure. Instead of the widely used graphene oxide synthesized by Hummer's method, TEGO sheets having a low amount of oxygen produced by thermal expansion were integrated into the fiber structure to investigate the effect of the oxygen functional groups of TEGO sheets on the degradation and antimicrobial activity of the scaffolds. There was no antimicrobial activity in TEGO‐reinforced scaffolds in the in vitro tests in contrast to the literature. This study confirmed that a low number of oxygen functional groups on the surface of TEGO restricted the antimicrobial activity of the fabricated composite scaffolds. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43490.  相似文献   

6.
A copolymer (2,4‐DHBPOF) synthesized by the condensation of 2,4‐dihydroxybenzophenone and oxamide with formaldehyde in the presence of acid catalyst with varying the molar proportions of the reacting monomer. Composition of the copolymer has been determined by elemental analysis. The copolymer has been characterized by UV–visible, FTIR, and 1H NMR spectroscopy. The morphology of synthesized copolymer was studied by scanning electron microscopy (SEM). The activation energy (Ea) and thermal stability calculated by using Sharp‐Wentworth, Freeman–Carroll, and Freidman's method. Thermogravimetric analysis (TGA) data were analyzed to estimate the characteristic thermal parameters. Freeman–Carroll and Sharp Wentworth methods have been used to calculate activation energy and thermal stability. The activation energy (Ea) calculated by using the Sharp‐Wentworth has been found to be in good agreement with that calculated by Freeman–Carroll method. Thermodynamic parameters such as free energy change (ΔF), entropy change (ΔS), apparent entropy change (S*), and frequency factor (Z) have also been evaluated based on the data of Freeman–Carroll method. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

7.
The present work investigates the structure properties of copolymers using thermogravimetric analysis, hot stage microscopy, static light scattering, field emission scanning electron microscopy, X‐ray diffraction analysis and a Brookfield viscometer. Poly(potassium 1‐hydroxyacrylate) (PKHA) is a water‐soluble polymer. However, the copolymer of styrene and 2‐isopropyl‐5‐methylene‐1,3‐dioxolan‐4‐one is not water soluble at equal molar ratio because the polystyrene reduces the solubility. The effect of styrene on poly(potassium 1‐hydroxyacrylate‐co‐styrene) copolymer, i.e. poly(KHA‐co‐St), was investigated for the increasing solubility of the copolymer. The solubility was increased at a lower molar ratio of styrene such as 0.4 in the copolymer. It was found that the copolymer was soluble in water when a content ratio of 68/32 mol% of homopolymer was incorporated in poly(KHA68co‐St32) copolymer as determined by NMR analysis. Also the poly(KHA68co‐St32) copolymer was found to be salt tolerant, possessed water absorption capacity and was thermally stable up to 183 °C. Moreover, it is shown that the polystyrene content plays a key role in the thermal stability of the copolymer. © 2017 Society of Chemical Industry  相似文献   

8.
A new strategy for graft copolymerization of thiophene onto a polystyrene (PSt) backbone by a multi‐step process is suggested and the effects of an organoclay on the final properties of the graft copolymer sample are described. For this purpose, first poly(styrene‐co‐4‐chloromethyl styrene) [P(St‐co‐CMSt)] was synthesized via nitroxide‐mediated polymerization. Afterwards, the chlorine groups of P(St‐co‐CMSt) were converted to thiophene groups using the Kumada cross‐coupling reaction and thiophene‐functionalized PSt multicenter macromonomer (ThPStM) was synthesized. The graft copolymerization of thiophene monomers onto PSt was initiated by oxidized thiophene groups in the PSt chains after addition of ferric chloride (FeCl3), an oxidative catalyst for polythiophene synthesis, and FeCl3‐doped polythiophene was chemically grafted onto PSt chains via oxidation polymerization. The graft copolymer obtained was characterized by 1H NMR and Fourier transform infrared spectroscopy, and its electroactivity behavior was verified under cyclic voltammetric conditions. Finally, PSt‐g‐PTh/montmorillonite nanocomposite was prepared by a solution intercalation method. The level of dispersion of organoclay and the microstructure of the resulting nanocomposite were probed by means of XRD and transmission electron microscopy. It was found that the addition of only a small amount of organoclay (5 wt%) was enough to improve the thermal stabilities of the nanocomposite.© 2013 Society of Chemical Industry  相似文献   

9.
A series of copolymers PDAMs were synthesized with varying monomer ratio of acrylamide (AM) and N,N‐dimethylaminoethyl methacrylate (DMAEMA). The resulting copolymer solution shows an interesting property of viscosity‐response which is CO2‐triggered and N2‐enabled. Tertiary amine groups of PDAMs experience a reversible transition between hydrophobic and hydrophilic state upon CO2 addition and its removal, which induced different rheological behavior. A combination of zeta‐potential, laser particle‐size analysis, and electrical conductivity analysis indicated that, when the monomer mole ratio of DMAEMA and AM is less than or equal to 3 : 7, the hydrophobic association structure between the copolymer molecules was destroyed by the leading of CO2 and caused a viscosity decrease in its solution. On the contrary, when the monomer mole ratio of DMAEMA and AM is more than 3 : 7, a more extended conformation due to the protonated tertiary amine groups is formed and the enhanced repulsive interactions among the copolymer molecule results in a rise of its solution viscosity. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40872.  相似文献   

10.
The poly(l ‐lactide)‐b‐poly(ethylene glycol)‐b‐poly(l ‐lactide) block copolymers (PLLA‐b‐PEG‐b‐PLLA) were synthesized in a toluene solution by the ring‐opening polymerization of 3,6‐dimethyl‐1,4‐dioxan‐2,5‐dione (LLA) with PEG as a macroinitiator or by transterification from the homopolymers [polylactide and PEG]. Two polymerization conditions were adopted: method A, which used an equimolar catalyst/initiator molar ratio (1–5 wt %), and method B, which used a catalyst content commonly reported in the literature (<0.05 wt %). Method A was more efficient in producing copolymers with a higher yield and monomer conversion, whereas method B resulted in a mixture of the copolymer and homopolymers. The copolymers achieved high molar masses and even presenting similar global compositions, the molar mass distribution and thermal properties depends on the polymerization method. For instance, the suppression of the PEG block crystallization was more noticeable for copolymer A. An experimental design was used to qualify the influence of the catalyst and homopolymer amounts on the transreactions. The catalyst concentration was shown to be the most important factor. Therefore, the effectiveness of method A to produce copolymers was partly due to the transreactions. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40419.  相似文献   

11.
To further enhance the performance of biodegradable polymer‐based medical devices, there is an increasing need to obtain independent control of key properties such as mechanical strength, degradation rate, and bioactivity. In this study, biodegradable copolymers of poly(1,6‐bis‐p‐carboxyphenoxyhexane‐co‐sebacic anhydride) (CPH:SA) are synthesized, via melt condensation techniques, at three different molar ratios (7 : 3, 5 : 5, and 3 : 7). Tablets of the copolymers are prepared by mold casting at high temperature. Using an in vitro degradation test, copolymer tablets demonstrate a suitable mechanical strength, a slight decrease in pH value, and a slow degradation rate. High cell viability is observed on the surface of the copolymer tablets. The 3‐(4,5dimethylthiazol‐2‐yl) 2,5‐diphenyltetrazolium bromide (MTT) assay and live/dead staining demonstrate reduced toxicity and high cell survival. In vitro testing with C2C12 cells reveals good cellular attachment and spreading on the tablet surfaces, with the best properties displayed by the 7 : 3 molar ratio copolymer. Materials composed of CPH:SA have the potential to serve as medical implants. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

12.
Poly(vinyl acetate‐alt‐dibutyl maleate)‐block‐poly(ethylene glycol) (PVDBM‐b‐PEG) copolymers were synthesized via reversible addition–fragmentation chain transfer radical polymerization and used as emulsifiers to form stable CO2‐in‐water high internal phase emulsions (C/W HIPEs). Then, highly interconnected cellular polyacrylamide (PAM) and poly(acrylamide‐coN‐hydroxymethyl acrylamide) [P(AM‐co‐HMAM)] poly‐HIPEs with enhanced mechanical strength were prepared based on the stable C/W HIPEs. The porous structures of the PAM poly‐HIPEs, as well as morphology and compressive modulus, could be influenced by the surfactant concentration and the length of the CO2‐philic tails of the surfactants. PAM poly‐HIPEs with the smallest average pore diameter (11.12 ± 0.62 μm) and the highest compressive modulus (22.65 ± 0.10 MPa) could be obtained by using the short CO2‐philic chains of the PVDBM‐b‐PEG surfactant at a high concentration (1.0 wt %). Moreover, with the copolymerization of N‐hydroxymethyl acrylamide (HMAM) comonomers with acrylamide, the compressive modulus of the obtained P(AM‐co‐HMAM) poly‐HIPEs was three times higher than that of PAM poly‐HIPEs. Both PAM and P(AM‐co‐HMAM) poly‐HIPEs were employed as scaffolds to guide H9c2 cardiac muscle cellular growth. Fluorescence images showed that a smaller average pore size and a narrower pore‐size distribution were helpful for cell growth and proliferation on these materials. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46346.  相似文献   

13.
The heat‐resistant copolymer of N‐phenylmaleimide (NPMI)–styrene (St)–maleic anhydride (MAH) was synthesized in xylene at 125°C with di‐tert‐butyl diperoxyterephthalate as an initiator. The characteristics of the copolymer were analyzed by Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy (1H‐NMR and 13C‐NMR), gel permeation chromatography, and elemental analysis. The 13C‐NMR results show that the copolymer possessed random sequence distribution; this was also supported by the differential scanning calorimetry experiment, in which a single glass‐transition temperature (Tg) of 202.3°C was observed. The thermal stability and degradation mechanism of the copolymer were investigated by thermogravimetric analysis. Using the Kissinger equation and Ozawa equation, we proved a nucleation controlling mechanism with an apparent activation energy of 144 kJ/mol. Blends of acrylonitrile–butadiene–styrene with the NPMI–St–MAH copolymer with various contents were prepared with a twin‐screw extruder processes. The mechanical and thermal properties of the materials, such as the tensile and flexural strength, Tg's, and Vicat softening temperatures, were all enhanced with the addition of the modifier, whereas the melt flow index decreased. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

14.
We synthesized water‐insoluble polymers, poly(β‐cyclodextrin‐co‐citric acid)s, by heating a mixture of citric acid, cyclodextrin (CD), and Na2HPO4 as a catalyst with a 6 : 1 : 2 molar ratio at 160, 170, and 180°C for 10 and 20 min. The chemical composition of the polyesters was determined by high pressure liquid chromatography (HPLC) analysis of the polymer hydrolysates. The crosslinking mechanisms and thermal degradation of the polymers were also investigated. The polyesters contained 30–35% citric acid, 1–4% unsaturated carboxylic acids (i.e., itaconic, cis‐aconitic, trans‐aconitic, and mesaconic acids), and 60–70% CD, whereas about 40% of them were able to form inclusion complexes. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
A series of biodegradable poly(L ‐lactide‐co‐?‐caprolactone) (PCLA) copolymers with different chemical compositions are synthesized and characterized. The mechanical properties and shape‐memory behaviors of PCLA copolymers are studied. The mechanical properties are significantly affected by the copolymer compositions. With the ?‐caprolactone (?‐CL) content increasing, the tensile strength of copolymers decreases linearly and the elongation at break increases gradually. By means of adjusting the compositions, the copolymers exhibit excellent shape‐memory effects with shape‐recovery and shape‐retention rate exceeding 95%. The effects of composition, deformation strain, and the stretching conditions on the recovery stress are also investigated systematically. A maximum recovery stress around 6.2 MPa can be obtained at stretching at Tg ? 15°C to 200% deformation strain for the PCLA70 copolymer. The degradation results show that the copolymers with higher ?‐CL content have faster degradation rates and shape‐recovery rates, meanwhile, the recovery stress can maintain a relative high value after 30 days in vitro degradation. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

16.
Considerable efforts have been devoted toward the development of electrospun scaffolds based on poly(ε‐caprolactone) (PCL) for bone tissue engineering. However, most of previous scaffolds have lacked the structural and mechanical strength to engineer bone tissue constructs with suitable biological functions. Here, we developed bioactive and relatively robust hybrid scaffolds composed of diopside nanopowder embedded PCL electrospun nanofibers. Incorporation of various concentrations of diopside nanopowder from 0 to 3 wt % within the PCL scaffolds notably improved tensile strength (eight‐fold) and elastic modulus (two‐fold). Moreover, the addition of diopside nanopowder significantly improved bioactivity and degradation rate compared to pure PCL scaffold which might be due to their superior hydrophilicity. We investigated the proliferation and spreading of SAOS‐II cells on electrospun scaffolds. Notably, electrospun PCL‐diopside scaffolds induced significantly enhanced cell proliferation and spreading. Overall, we concluded that PCL‐diopside scaffold could potentially be used to develop clinically relevant constructs for bone tissue engineering. However, the extended in vivo studies are essential to evaluate the role of PCL‐diopside fibrous scaffolds on the new bone growth and regeneration. Therefore, in vivo studies will be the subject of our future work. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44433.  相似文献   

17.
Ferrocene‐substituted conducting polymer namely poly(trans‐1‐(4‐methyl‐3′‐thienyl)‐2‐(ferrocenyl)ethene‐co‐3,4‐ethylenedioxythiophene) [P(MTFE‐co‐EDOT)] was synthesized and its electrochromic properties were studied. Monomer, MTFE, was obtained using 2‐(ferrocenyl)ethene and 3‐methyl‐4‐bromothiophene. The structure of monomer was determined via Fourier transform infrared spectroscopy (FTIR), 1H‐NMR, and 13C‐NMR techniques. The copolymer was synthesized using this monomer and EDOT. The resulting copolymer P(MTFE‐co‐EDOT) was characterized by cyclic voltammetry, FTIR, scanning electron microscopy, atomic force microscopy, and UV–vis spectroscopy. The conductivity measurements of copolymer and PEDOT were accomplished by the four‐probe technique. Although poly(trans‐1‐(4‐methyl‐3′‐thienyl)‐2‐(ferrocenyl)ethene) [P(MTFE)] reveals no electrochromic activity, its copolymer with EDOT has two different colors (violet and gray). Band gap (Eg) and λmax of P(MTFE‐co‐EDOT) were determined. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
Homopolymer of 1‐4‐di[2,5‐di(2‐thienyl)‐1H‐1‐pyrrolyl]benzene and its copolymer with 3,4‐ethylenedioxythiophene (EDOT) were electrochemically synthesized and characterized. Resulting homopolymer and copolymer films have distinct electrochromic properties. At the neutral state, homopolymer has λmax due to the π‐π* transition as 410 nm and Eg was calculated as 2.03 eV. The resultant copolymer revealed multichromism through the entire visible region, displaying red‐violet, brownish yellow green, and blue colors with the variation of the applied potential. For the copolymer, λmax and Eg were found to be 450 nm and 1.66 eV, respectively. Double potential step chronoamperometry experiment shows that homopolymer and copolymer films have good stability, fast switching times, and high optical contrast in NIR region as 41 and 30%, respectively. Copolymerization with EDOT not only decreases the band gap, Eg, but also enhances the electrochromic properties. Hence, electrochemical copolymerization is considered to be a powerful tool to improve the electrochromic properties of N‐substituted 2,5‐di(2‐thienylpyrrole) derivatives. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
A novel aromatic homopolyamide with benzobisoxazole units in the main chain was synthesized with 2,6‐bis(p‐aminophenyl)benzo[1,2‐d;5,4‐d′]bisoxazole and terephthaloyl chloride by low temperature solution polycondensation, the inherent viscosity of which was 1.98 dL/g. The diamine and p‐phenylendiamine with terephthaloyl chloride were used to synthesize the copolyamides. The structures of homopolyamide and copolyamides were characterized by IR spectra, elemental analysis, and wide‐angle X‐ray diffraction. Wide‐angle X‐ray diffraction measurements showed that homopolyamide and copolyamides were predominantly crystallinity. The results of thermal analysis indicated that the thermal stabilities of the copolymer increased with an increase of the molar fraction of benzobisoxazole in the copolymers. The thermal stability of the copolyamides with decomposition temperatures (at 10% weight loss) above 570°C was better than that of poly(p‐phenylene terephthalamide) (PPTA). Fibers of homopolyamide and copolyterephthalamides were spun from lyotropic liquid crystal dope in 100% H2SO4. When compared with PPTA fibers prepared under the same conditions, the tensile strengths of copolyamides fibers improved by 20–33% with tensile strengths of 1.81 GPa, tensile moduli of 76 GPa, and elongations at break of 3.8–4.1%, which indicated that copolyamides fibers had outstanding mechanical properties. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
Novel polyacrylonitrile (PAN)‐co‐poly(hydroxyethyl acrylate) (PHEA) copolymers at three different compositions (8, 12, and 16 mol % PHEA) and their homopolymers were synthesized systematically by emulsion polymerization. Their chemical structures and compositions were elucidated by Fourier transform infrared, 1H‐NMR, and 13C‐NMR spectroscopy. Intrinsic viscosity measurements revealed that the molecular weights of the copolymers were quite enough to form ductile films. The influence of the molar fraction of hydroxyethyl acrylate on the glass‐transition temperature (Tg) and mechanical properties was demonstrated by differential scanning calorimetry and tensile test results, respectively. Additionally, thermogravimetric analysis of copolymers was performed to investigate the degradation mechanism. The swelling behaviors and densities of the free‐standing copolymer films were also evaluated. This study showed that one can tailor the hydrogel properties, mechanical properties, and Tg's of copolymers by changing the monomer feed ratios. On the basis of our findings, PAN‐co‐PHEA copolymer films could be useful for various biomaterial applications requiring good mechanical properties, such as ophthalmic and tissue engineering and also drug and hormone delivery. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号