共查询到20条相似文献,搜索用时 0 毫秒
1.
The properties (rheological,dielectric, and mechanical) and microtopography of spherical fullerene‐filled poly(arylene ether nitrile) nanocomposites 下载免费PDF全文
Poly (arylene ether nitrile)/fullerene (PEN/fullerene) nanocomposites were prepared by a facile solution‐cast method and the rheological, dielectric, mechanical, and morphological properties of the resulted nanocomposites were systematically studied and compared. Rheological studies showed PEN/fullerene nanocomposites percolation network formed at fullerene containing of 1.50 wt %, when the shear frequency was fixed at 0.1 Hz, the fitted rheological percolation threshold was about 1.55 wt %, very close to the experimental observations. The dielectric transaction occurs when the fullerene loading reached 1.50 wt %, that is very close to its rheological percolation threshold. At this point, PEN/fullerene nanocomposites also showed the optimal mechanical properties with a tensile strength of 93.6 MPa and modulus of 1951.5 MPa, which is increased by 27% and 15% compared with the pure PEN. SEM and TEM images have manifested the separate fullerene aggregated to fullerene bundles in PEN/fullerene nanocomposites, and the dispersion of fullerene bundles begin to go bad when the containing above 1.50 wt %. The PEN/fullerene nanocomposites can be widely used due to its excellent dielectric and mechanical performance. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40100. 相似文献
2.
Based on a “graft from” strategy, the surface of starch nanocrystals (StN) were functionalized by grafting with polycaprolactone (PCL) chains via microwave assisted ring‐opening polymerization (ROP). The modified natural nanoparticles were then compounded into a PCL‐based waterborne polyurethane as matrix. The structural and mechanical properties of the WPU/StN‐g‐PCL nanocomposites were characterized by XRD, FTIR, SEM, DSC, DMA, and tensile testing. It was interesting to note that a loading‐level of 5 wt % StN‐g‐PCL resulted in a simultaneous enhancement of tensile strength and elongation at break, both of which were higher than those of neat WPU. This enhancement was attributed to the uniform dispersion of StN‐g‐PCL because of its nano‐scale size, the increased entanglements mediated with grafted PCL chains, and the reinforcing function of rigid StN. Increasing the StN‐g‐PCL content however caused the StN‐g‐PCL to self‐aggregate as crystalline domains, which impeded improvement in tensile strength and elongation at break, but significantly enhanced Young's modulus. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
3.
The processing of cross‐linked polyarylene ether nitrile (PEN), which has a triazine rings structure, has been investigated under different reaction times and temperatures. In this study, the PEN films prepared by the tape‐casting formed the thermally stable triazine rings by catalytic cross‐linking reaction gradually, which was characterized by Fourier transform infrared spectroscopy. The chemical cross‐linking reaction occurred as the CN group absorption of PEN at 2221 cm−1 decreased and a new absorption peak, at 1682 cm−1, was observed, and the absorption peak intensity would be progressively larger, with the extension of the processing time. After the formation of cross‐linking networks, the cross‐linking degree and thermal and mechanical properties of the processed films were improved substantially, compared with the untreated films. The film with added ZnCl2 as the catalyst was more rapidly cross‐linked, and its properties were better than that without catalyst at the same treatment conditions. The glass‐transition temperature (Tg) of PEN films processed at 350°C for 4 h (213.65°C) was higher than that of PEN films before the treatment (161°C), and the tensile strength was also improved significantly. The PEN was processed at 350°C for 2 h, whose initial decomposition temperature increases by about 10°C, compared with that of untreated film, at one time. The rheology behavior of the cross‐linked films was processed on dynamic rheometer to monitor and track the process of polymer cross‐linking reaction. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
4.
Thermal,mechanical, and dielectric properties of aluminum silicate fiber reinforced aluminum phosphate–poly(ether sulfone) layered composites 下载免费PDF全文
In this study, a novel aluminum phosphate (AlPO4) heat‐resistant layer reinforced with aluminum silicate fiber (ASF) was successfully compounded on a poly(ether sulfone) (PES) matrix via the preparation process of high‐temperature heat treatment and vacuum hot‐pressing sintering technique. The influence of the ASF content on the morphology, thermal, mechanical, and dielectric properties of the as‐fabricated aluminum silicate fiber reinforced aluminum phosphate–poly(ether sulfone) (ASF/AlPO4–PES) layered composite was investigated. The results reveal that the incorporation of aluminum silicate fiber/aluminum phosphate (ASF/AlPO4) heat‐resistant layer can significantly improve the thermal stability and mechanical performances of the PES matrix composites. Compared with the pristine PES, the ASF/AlPO4–PES layered composite containing 8.0 wt % ASF exhibited better high‐temperature resistance properties (300 °C) and a lower thermal conductivity (0.16 W m?1 K?1). Furthermore, the dielectric constant and dielectric loss tangent of this PES matrix composite decreased to 2.16 and 0.007, respectively. Meanwhile, the frequency stability of the dielectric properties for the ASF/AlPO4–PES layered composites was remarkably enhanced with increasing ASF addition at frequencies ranging from 102 Hz to 5 MHz. This was attributed to the existence of microscopic pores within the ASF/AlPO4 layer and the strong interfacial bonding between the ASF/AlPO4 layer and the PES matrix. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45542. 相似文献
5.
Thermal,mechanical, and shape‐memory properties of nanorubber‐toughened,epoxy‐based shape‐memory nanocomposites 下载免费PDF全文
Epoxy‐based shape‐memory polymers (ESMPs) are a type of the most promising engineering smart polymers. However, their inherent brittleness limits their applications. Existing modification approaches are either based on complicated chemical reactions or done at the cost of the thermal properties of the ESMPs. In this study, a simple approach was used to fabricate ESMPs with the aim of improving their overall properties by introducing crosslinked carboxylic nitrile–butadiene nanorubber (CNBNR) into the ESMP network. The results show that the toughness of the CNBNR–ESMP nanocomposites greatly improved at both room temperature and the glass‐transition temperature (Tg) over that of the pure ESMP. Meanwhile, the increase in the toughness did not negatively affect other macroscopic properties. The CNBNR–ESMP nanocomposites presented improved thermal properties with a Tg in a stable range around 100 °C, enhanced thermal stabilities, and superior shape‐memory performance in terms of the shape‐fixing ratio, shape‐recovery ratio, shape‐recovery time, and repeatability of shape‐memory cycles. The combined property improvements and the simplicity of the manufacturing process demonstrated that the CNBNR–ESMP nanocomposites are desirable candidates for large‐scale applications in the engineering field as smart structural materials. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45780. 相似文献
6.
Clay‐dispersed poly(styrene‐co‐acrylonitrile) nanocomposites (PSAN) were synthesized by a free radical polymerization process. The montmorillonite (MMT) was modified by a cationic surfactant hexadecyltrimethylammonium chloride. The structures of PSAN were determined by wide‐angle X‐ray diffraction and FTIR spectroscopy. The dispersion of silicate layers in the polymer matrix was also revealed by transmission electron microscopy (TEM). It was confirmed that the clay was intercalated and exfoliated in the PSAN matrix. The increased thermal stability of PSAN with the addition of clay was observed by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The dielectric properties of PSAN were measured in the frequency range 100 Hz to 1 MHz at 35–70°C. It was found that the dielectric constant from the dipole orientation had been suppressed due to the intercalation of clay. The dielectric loss is strongly related to the residual sodium content of clay, which increases as the sodium content increases by the addition of clay. Copyright © 2004 Society of Chemical Industry 相似文献
7.
Minzhen Zheng Xiaochuan Chen Huibin Cheng Changlin Cao Qingrong Qian Dingshan Yu Xudong Chen 《Polymer International》2021,70(1):116-122
Polymer dielectric composites, which possess high dielectric and loss suppression with excellent mechanical properties, are of crucial importance in practical applications. Herein, high‐density polyethylene/nitrile rubber/multiwalled carbon nanotube (HDPE/NBR/MWCNT) composites were fabricated by the dynamic vulcanization (DV) technique. The effect of DV on the structure and properties of HDPE/NBR/MWCNTs was systematically investigated. The results illustrate that the DV technique combines the advantages of the crosslinked phase and melt processability of thermoplastics. With the increase of dicumyl peroxide content, the dielectric permittivity and the mechanical properties clearly increase, due to a better compatibility and dispersibility achieved by DV. More importantly, a continuous decrease of dielectric loss and conductivity are observed with the increase of dicumyl peroxide content. These can probably be assigned to the combination of better dispersion and slower chain mobility of the NBR phase induced by crosslinking. © 2020 Society of Industrial Chemistry 相似文献
8.
We herewith report the thermal, mechanical (modulus), and dielectric properties of polystyrene (PS)/expanded graphite (EG) nanocomposites fabricated by a simple technique of dispersing EG (up to 2.5 vol %) in PS matrix via solution method followed by hot pressing. The thermal stability and char yield of the nanocomposites are improved marginally. The modulus, electrical conductivity, dielectric constant, and dielectric loss tangent of the nanocomposites are significantly increased with EG content. The modulus of the nanocomposites increases by about twofold at 30°C compared with that of pure PS. The dielectric constant and the loss tangent of nanocomposites are increased up to 13‐fold and 200‐fold compared with that of pure PS, respectively, at 1 MHz and varied with frequency. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
9.
Jesús E Bautista‐Del‐ngel Ana B Morales‐Cepeda Paula M Wood‐Adams 《Polymer International》2020,69(10):1024-1037
Binary and ternary composites of poly(lactic acid) (PLA), poly(ether‐block‐amide) (PEBAX) and copper nanoparticles were prepared by melt blending in an internal mixer. Compatibility and molecular interactions between the three components of the nanocomposites were evaluated using scanning electron microscopy and Fourier transform infrared spectroscopy. It was found that the carbonyl groups of the PLA and copper nanoparticles interact. Also, PLA and PEBAX are compatible and develop molecular interactions between the C=O of PLA and the C=O and NH of PEBAX, forming dipole–dipole bonds and hydrogen bonds. The compatibility and molecular interaction between PLA and PEBAX are reduced by copper nanoparticles. The reduction of compatibility between PLA and PEBAX produced a lower storage modulus and lower strain at break in the ternary systems than in the blend PLA‐PEBAX. Copper nanoparticles enhanced the crystallinity of PLA. PLA responded more strongly to the nucleating effect of copper when PEBAX was added indicating a synergistic effect. The strain at break of PLA was enhanced by the addition of PEBAX but was severely reduced by the presence of nanoparticles. © 2020 Society of Chemical Industry 相似文献
10.
Allyl phenyl compounds, allyl epoxy resins, and epoxy acrylate resins are adapted to copolymerize with bismaleimide (BMI) resins and to modify mechanical properties and processing properties. Reaction activity, physical properties, mechanical properties, dielectric properties, and thermal stability were investigated. Impact strength and flexural strength of modified BMI resin are increased about twice and 42% than that of pure BMI resin, respectively. Fracture elongation is from 1.6 to 2.3%. The fracture surfaces of the broken specimens are examined by scanning electron microscopy (SEM). As a result, modified BMI resins put up typical toughness rupture. The modified BMI resins possess excellent dielectric properties, and dielectric constant and dielectric loss almost hold the line with increasing epoxy concentration. When the test frequency scope is from 1 to 20 GHz, the dielectric constant and dielectric loss of modified BMI resins is 3.05–3.12 and 0.0089–0.012, respectively. The modified BMI resins still possess fine properties after hydrothermal aging. After 100 h in boiling water, the reservation ratios of both the impact strength and flexural strength of modified system exceeded 90%, and the water absorption and heat distortion temperature (HDT) is 2.6% and 235°C, respectively. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 315–319, 2006 相似文献
11.
A thermally conductive linear low‐density polyethylene (LLDPE) composite with silicon carbide (SiC) as filler was prepared in a heat press molding. The SiC particles distributions were found to be rather uniform in matrix at both low and high filler content due to a powder mixing process employed. Differential scanning calorimeter results indicated that the SiC filler decreases the degree of crystallinity of LLDPE, and has no obvious influence on the melting temperature of LLDPE. Experimental results demonstrated that the LLDPE composites displays a high thermal conductivity of 1.48 Wm?1 K?1 and improved thermal stability at 55 wt % SiC content as compared to pure LLDPE. The surface treatment of SiC particles has a beneficial effect on improving the thermal conductivity. The dielectric constant and loss increased with SiC content, however, they still remained at relatively low levels (<102 Hz); whereas, the composites showed poorer mechanical properties as compared to pure LLDPE. In addition, combined use of small amount of alumina short fiber and SiC gave rise to improved overall properties of LLDPE composites. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
12.
Yuanming Chen Xuemei He Yue Wu Xing Gao Jinling Wang Wei He Vadim V. Silberschmidt Huan Xu 《Polymer Composites》2016,37(10):3033-3041
Aluminum nitride (AlN) with high thermal conductivity was blended in polyarylene ether nitrile (PEN) to obtain a composite system. A ball milling process could provide AlN particles of smaller size with higher surface silylation for homogeneous particle distribution in polymeric matrix. Thermal, electrical, and mechanical behaviors of the produced composites were characterized to investigate the effects of particles on the performance of PEN‐based composites with functionalized AlN. The composite exhibited thermal conductivity of 0.779 W m−1 K−1, a dielectric constant of 7.7, dielectric loss of 0.032, electrical resistivity of 1.39 GΩ.cm, and break strength of 36 N when the fraction of functionalized AlN increased to 42.3 vol%. A fitted equation based on the improved Russell's model could effectively predict a trend for thermal conductivity of the composite systems with consideration of interfacial resistance between AlN and surrounding PEN. POLYM. COMPOS., 37:3033–3041, 2016. © 2015 Society of Plastics Engineers 相似文献
13.
Hong‐Wen Wang Kung‐Chin Chang Hsuan‐Chih Chu Shir‐Joe Liou Jui‐Ming Yeh 《应用聚合物科学杂志》2004,92(4):2402-2410
Polystyrene–clay nanocomposite (PsCN) materials have been prepared by a free radical polymerization process. Montmorillonite (MMT), modified by two different organics, was investigated: one contains a short chain and three benzyl groups on the ammonium ion (DAETPB), while the other contains a long chain (HTAC). The organic modification determines the extent of exfoliation or intercalation of the materials. Exfoliation is more likely to occur using HTAC, as then the gallery of clay has been opened more due to the long chain structure. Exfoliation of MMT in polystyrene (PS) matrix was revealed by X‐ray diffraction (XRD) and transmission electron microscopy (TEM). Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were employed to confirm the increased thermal stability of these PsCN materials. Dielectric properties of polystyrene‐clay nanocomposites, in the form of film with clay loading from 1.0 to 5.0 wt %, were measured under frequencies of 100 Hz~1 MHz at 25~70°C. Decreased dielectric constant and low dielectric loss were observed for PsCN materials. Especially, the decrease of dielectric constant was found to be related to the extent of exfoliation of clay. It is recognized that the confinement effect of clay results in the suppression of the dielectric response of the nanocomposite materials at low frequency. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2402–2410, 2004 相似文献
14.
Bio‐based polyamide 11 and natural halloysite nanotubes (HNTs) were used for the preparation of PA‐11/HNT nanocomposites with varying nanotubes concentrations by melt extrusion using a masterbatch dilution process. The prepared nanocomposites were analyzed for microstructural changes, transparency, thermal stability, rheological behavior, dielectric, and mechanical properties. The HNT nanotubes are well dispersed in PA‐11 matrix in the studied composition range as shown by microscopy and spectrophotometry. Interestingly, good halloysite dispersion in PA‐11 matrix increases the tensile strength and Young modulus of PA‐11 without sacrificing the ductility. Highly dispersed nanotubes also bring favorable changes in the thermal stability, dielectric, and rheological characteristics of PA‐11. Additionally, glass transition temperature, crystallization temperature, and degree of crystallinity of the nanocomposites tend to increase with increase in nanotubes loading. Thus, PA‐11 can become a tailor‐made material with multifunctional characteristics, thanks to the addition of HNTs. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013 相似文献
15.
Enhanced mechanical properties and fire retardancy of polyamide 6 nanocomposites based on interdigitated crystalline montmorillonite–melamine cyanurate 下载免费PDF全文
Polyamide 6 (PA6)–montmorillonite (MMT)–melamine cyanurate (MCA) nanocomposites were prepared by the incorporation of interdigitated crystalline MMT–MCA. Their morphologies were assessed by X‐ray diffraction, scanning electron microscopy, transmission electron microscopy, thermal stability measurement by thermogravimetric analysis, mechanical properties measurement by tensile tests, and fire retardancy measurement by limiting oxygen index testing and vertical burning testing (UL‐94). The results indicate that MMT–MCA was homogeneously nanodispersed in PA6. Compared with PA6–MCA, the PA6–MMT–MCA nanocomposites showed enhanced thermal stability. The mechanical properties and fire retardancy show that the PA6–MMT–MCA nanocomposites with 5 wt % total loading of MMT–MCA reached UL‐94 V‐2 rating (3.2 mm) and significantly increased the tensile strength of PA6 up to 24.8 % with only 1 wt % MMT in PA6. Through the control the weight ratio of MMT and MCA in MMT–MCA, the Young's modulus of PA6 could be adjusted in a very wide range (300–1100 MPa) because of the dual role of the rigid MMT and nonrigid MCA layers. The reinforced mechanism of the mechanical properties was also investigated. Consequently, the PA6–MMT–MCA nanocomposites with a good nanodispersing ability, improved thermal stability, excellent mechanical properties, and good flame retardancy were obtained and could provide broad prospects for wider applications for PA6 materials. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46039. 相似文献
16.
New amide–acid functional SiO2 nanoparticle (FSNP)‐reinforced semi‐crystalline aliphatic–aromatic poly(ether‐sulfone‐amide) (PESA) was synthesized using a solution method in dimethylformamide. The surfaces of SiO2 nanoparticles were functionalized with phthalic anhydride, and subsequently PESA was synthesized using direct polymerization with good yield and desired molar mass. PESA / SiO2 nanocomposites (PSNCs) were prepared with three different contents of FSNP and the morphology and mechanical, thermal and combustion properties of the PSNCs were studied. The results of X‐ray diffraction, field‐emission scanning electron microscopy and transmission electron microscopy showed a uniform dispersion for FSNP in the PESA matrix. According to the results of mechanical tests, the tensile strength and the Young's modulus of PESA were enhanced by FSNP loading. Thermogravimetric analysis and derivative thermogravimetry results showed a substantial improvement in thermal properties of PESA. The temperature at 5% mass loss was increased from 371.7 to 395.8 °C for the PSNC containing 8 mass% of FSNP, as well as the char yield being enhanced greatly, which was about 30% higher than that of neat PESA. Significant improvements in combustion properties were observed for PSNCs from microscale combustion calorimetry. The peak heat release rate showed an obvious improvement and decreased by about 57% compared to that of neat PESA on 8 mass% loading of FSNP. © 2016 Society of Chemical Industry 相似文献
17.
Poly(arylene ether nitriles) (PEN) containing various contents of graphene nanosheets (GNs) was prepared via solution‐casting method and investigated for their dielectric, mechanical, thermal, and rheological properties. For PEN/GNs nanocomposite with 5 wt % GNs, the dielectric constant was increased to 9.0 compared with that of neat PEN (3.1) and dielectric losses of all nanocomposites were in the range of 0.019–0.023 at 1 kHz. The tensile modulus and strength were increased about 6 and 14% with 0.5% GNs, respectively. The fracture surfaces of the all PEN/GNs nanocomposites revealed that GNs had good adhesion to PEN matrix. The thermal properties of the nanocomposites showed significant increase with increasing GN loading. For 5 wt % GNs‐reinforced PEN nanocomposite, the temperatures corresponding to a weight loss of 5 wt % (Td5%) and 30 wt % (Td30%) increased by about 20 and 13°C, respectively. Rheological properties of the PEN nanocomposites showed a sudden change with the GN fraction and the percolation threshold was about 1 wt % of GNs. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 相似文献
18.
M. El Achaby F. Z. Arrakhiz S. Vaudreuil E. M. Essassi A. Qaiss M. Bousmina 《应用聚合物科学杂志》2013,127(6):4697-4707
Nanocomposites of poly(vinylidene fluoride) (PVDF) with chemically reduced graphene nanosheets (GNs) were prepared by melt mixing method and their structure and morphology characterized by SEM analysis. The addition of GNs in the PVDF matrix resulted in changes of the crystallization and melting behaviors. Furthermore, increasing GNs content led to improved thermal stability of the PVDF nanocomposites in air and nitrogen, as well as significant increase in tensile and flexural properties. The nanocomposites' rheological behavior is also affected by the GNs' content. Using oscillatory rheology to monitor the GNs' dispersion, it was found that as the GNs loading increase, the Newtonian behavior disappears at low frequency. This suggests a viscoelastic behavior transition from liquid‐like to solid‐like, with greater GNs content and more homogeneous dispersion resulting in a stronger solid‐like and nonterminal behavior. By using the melt mixing method to disperse GNs, the properties of PVDF are enhanced due to the better dispersion and distribution of GNs throughout the matrix. This improvement could broaden the applications for PVDF nanocomposites. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013 相似文献
19.
CoFe2O4 magnetic nanoparticles were prepared by in situ precipitation and oxidation of Co2+ and Fe2+ within a sulfonated polystyrene resin. The nanometric particles were characterized by X‐ray diffraction. A ferrofluid was prepared from the CoFe2O4 mineralized polymer resin and water. Poly(vinyl alcohol) (PVA)‐based nanocomposite materials were obtained by mixing different amounts of ferrofluid (compositions ranging within 0–51 wt % of mineralized resin) with an aqueous solution of the polymer. The PVA composite materials were characterized by TGA, DSC, and stress–strain testing. The thermal and mechanical properties of PVA change with filler content, exhibiting an initial increase in these properties due to polymer–filler interactions. After a maximum value, at about 15 wt % of mineralized resin, the mechanical properties decrease probably due to particle aggregation which causes phase separation. The results obtained show that the nanoparticles are dispersed in the amorphous regions of the polymer, the crystalline zones remaining unaltered up to compositions as high as 30 wt %. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 3215–3222, 2001 相似文献
20.
A series of copolymers and glass fiber composites were successfully prepared from 2,2‐bis [4‐(3,4‐dicyanophenoxy) phenyl] propane (BAPh), epoxy resins E‐44 (EP), and polyarylene ether nitriles (PEN) with 4,4′‐diaminodiphenyl sulfone as curing additive. The gelation time was shortened from 25 min to 4 min when PEN content was 0 wt % and 15 wt %, respectively. PEN could accelerate the crosslinking reaction between the phthalonitrile and epoxy. The initial decomposition temperatures (Ti) of BAPh/EP copolymers and glass fiber composites were all more than 350°C in nitrogen. The Tg of 15 wt % PEN glass fiber composites increased by 21.2°C compared with that of in comparison with BAPh/EP glass fiber composite. The flexural strength of the copolymers and glass fiber composites reached 119.8 MPa and 698.5 MPa which increased by 16.6 MPa and 127.3 MPa in comparison with BAPh/EP composite, respectively. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013 相似文献