首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The expression of histidine biosynthetic genes in enteric bacteria is regulated by an attenuation mechanism in which the level of histidyl-tRNA serves as a key sensor of the intracellular histidine pool. Among the early observations that led to the formation of this model for Salmonella typhimurium were the identification of mutants in the gene (hisS) encoding histidyl-tRNA synthetase. We report here the detailed biochemical characterization of five of these S. typhimurium bradytrophic mutants isolated by selection for resistance to histidine analogs, including identification of the deduced amino acid substitutions and determination of the resulting effects on the kinetics of adenylation and aminoacylation. Using the crystal structure of the closely related Escherichia coli histidyl-tRNA synthetase (HisRS) as a guide, two mutants were mapped to a highly conserved proline residue in motif 2 (P117S, P117Q), and were correlated with a fivefold decrease in the kcat for the pyrophosphate exchange reaction, as well as a tenfold increase in the Km for tRNA in the aminoacylation reaction. Another mutant substitution (A302T) mapped to a residue adjacent to the histidine binding pocket, leading to a tenfold increase in Km for histidine in the pyrophosphate exchange reaction. The remaining two mutants (S167F, N254T) substitute residues in or directly adjacent to the hinge region, which joins the insertion domain between motif 2 and motif 3 to the catalytic core, and cause the Km for tRNA to increase four- to tenfold. The kinetic analysis of these mutants establishes a direct link between critical interactions within the active site of HisRS and regulation of histidine biosynthesis, and provides further evidence for the importance of local conformational changes during the catalytic cycle.  相似文献   

2.
Theaminoacyl tRNAsynthetases (aaRSs)playpivotalrolesinproteinbiosynthesis,whereeachofthe 2 0aaRSsisspecificforoneaminoacidanditscognateisoacceptorsoftRNA .TheinteractionofRE3 withtRNAwasstudiedbythemethodsofnuclearmagneticresonance[1 ,2 ] ,ultraviolet,fluoresce…  相似文献   

3.
The crystal structure of glutathione synthetase from Escherichia coli B complexed with ADP, glutathione, and sulfate has been determined at 2.0 A resolution. Concerning the chemical similarity of sulfate and phosphate, this quaternary complex structure represents a pseudo enzyme-substrate complex in the reverse reaction and consequently allows us to understand the active site architecture of the E. coli glutathione synthetase. Two Mg2+ ions are coordinated with oxygen atoms from the alpha- and beta-phosphate groups of ADP and from the sulfate ion. The flexible loops, invisible in the unliganded or the binary and ternary complex structures, are fixed in the quaternary complex. The larger flexible loop (Ile226-Arg241) includes one turn of a 310-helix that comprises the binding site of the glycine moiety of GSH. The small loop (Gly164-Gly167) is involved in nucleotide binding and acts as a phosphate gripper. The side chains of Arg210 and Arg225 interact with the sulfate ion and the beta-phosphate moiety of ADP. Arg 210 is likely to interact with the carboxylate of the C-terminal gamma-glutamylcysteine in the substrate-binding form of the forward reaction. Other positively charged residues in the active site (Lys125 and Lys160) are involved in nucleotide binding, directing the phosphate groups to the right position for catalysis. Functional aspects of the active site architecture in the substrate-binding form are discussed.  相似文献   

4.
o-Succinylbenzoyl coenzyme A (OSB-CoA) synthetase, when treated with diethylpyrocarbonate (DEP), showed a time-dependent loss of enzyme activity. The inactivation follows pseudo-first-order kinetics with a second-order rate constant of 9.2 x 10(-4) +/- 1.4 x 10(-4) microM(-1) min(-1). The difference spectrum of the modified enzyme versus the native enzyme showed an increase in A242 that is characteristic of N-carbethoxyhistidine and was reversed by treatment with hydroxylamine. Inactivation due to nonspecific secondary structural changes in the protein and modification of tyrosine, lysine, or cysteine residues was ruled out. Kinetics of enzyme inactivation and the stoichiometry of histidine modification indicate that of the eight histidine residues modified per subunit of the enzyme, a single residue is responsible for the enzyme activity. A plot of the log reciprocal of the half-time of inactivation against the log DEP concentration further suggests that one histidine residue is involved in the catalysis. Further, the enzyme was partially protected from inactivation by either o-succinylbenzoic acid (OSB), ATP, or ATP plus Mg2+ while inactivation was completely prevented by the presence of the combination of OSB, ATP, and Mg2+. Thus, it appears that a histidine residue located at or near the active site of the enzyme is essential for activity. When His341 present in the previously identified ATP binding motif was mutated to Ala, the enzyme lost 65% of its activity and the Km for ATP increased 5.4-fold. Thus, His341 of OSB-CoA synthetase plays an important role in catalysis since it is probably involved in the binding of ATP to the enzyme.  相似文献   

5.
S-Adenosylmethionine (AdoMet) synthetase catalyzes the formation of AdoMet and tripolyphosphate (PPPi) from ATP and L-methionine and the subsequent hydrolysis of the PPPi to PPi and Pi before product release. Little is known about the roles of active-site residues involved in catalysis of the two sequential reactions that occur at opposite ends of the polyphosphate chain. Crystallographic studies of Escherichia coli AdoMet synthetase showed that arginine-244 is the only arginine near the polyphosphate-binding site. Arginine-244 is embedded as the seventh residue in the conserved sequence DxGxTxxKxI which is also found at the active site of inorganic pyrophosphatases, suggesting a potential pyrophosphate-binding motif. Chemical modification of AdoMet synthetase by the arginine-specific reagents phenylglyoxal or p-hydroxyphenylglyoxal inactivates the enzyme. ATP and PPPi protect the enzyme from inactivation, consistent with the presence of an important arginine residue in the vicinity of the polyphosphate-binding site. Site-specific mutagenesis has been used to change the conserved arginine-244 to either leucine (R244L) or histidine (R244H). In the overall reaction, the R244L mutant has the kcat reduced approximately 10(3)-fold, with a 7 to 10-fold increase in substrate Km values; the R244H mutant has an approximately 10(5)-fold decrease in kcat. In contrast, the kcat values for hydrolysis of added PPPi by the R244L and R244H mutants have been reduced by less than 2 orders of magnitude. In contrast to the wild-type enzyme in which 98% of the Pi formed originates as the gamma-phosphoryl group of ATP, in the R244L mutant the orientation of the PPPi intermediate equilibrates at the active site yielding equal amounts of Pi from the alpha- and gamma-phosphoryl groups of ATP. Thus, the active-site arginine has a profound role in the cleavage of PPPi from ATP during AdoMet formation and in maintaining the orientation of PPPi in the active site, while playing a lesser role in the subsequent PPPi hydrolytic reaction.  相似文献   

6.
Identity elements in tRNAs and the intracellular balance of tRNAs allow accurate selection of tRNAs by aminoacyl-tRNA synthetases. The histidyl-tRNA from Escherichia coli is distinguished by a unique G-1.C73 base pair that upon exchange with other nucleotides leads to a marked decrease in the rate of aminoacylation in vitro. G-1.C73 is also a major identity element for histidine acceptance, such that the substitution of C73 brings about mischarging by glycyl-, glutaminyl-, and leucyl-tRNA synthetases. These identity conversions mediated by the G-1.C73 base pair were exploited to isolate secondary site revertants in the histidyl-tRNA synthetase from E. coli which restore histidine identity to a histidyl-tRNA suppressor carrying U73. The revertant substitutions confer a 3-4 fold reduction in the Michaelis constant for tRNAs carrying the amber-suppressing anticodon and map to the C-terminal domain of HisRS and its interface with the catalytic core. These findings demonstrate that the histidine tRNA anticodon plays a significant role in tRNA selection in vivo and that the C-terminal domain of HisRS is in large part responsible for recognizing this trinucleotide. The kinetic parameters determined also show a small degree of anticooperativity (delta delta G = -1.24 kcal/mol) between recognition of the discriminator base and the anticodon, suggesting that the two helical domains of the tRNA are not recognized independently. We propose that these effects substantially account for the ability of small changes in tRNA binding far removed from the site of a major determinant to bring about a complete conversion of tRNA identity.  相似文献   

7.
Structures of adenylosuccinate synthetase from Escherichia coli complexed with guanosine-5'-(beta,gamma-imido) triphosphate and guanosine-5'-(beta,gamma-methylene)triphosphate in the presence and the absence of Mg2+ have been refined to R-factors below 0.2 against data to a nominal resolution of 2.7 A. Asp333 of the synthetase hydrogen bonds to the exocyclic 2-amino and endocyclic N1 groups of the guanine nucleotide base, whereas the hydroxyl of Ser414 and the backbone amide of Lys331 hydrogen bond to the 6-oxo position. The side chains of Lys331 and Pro417 pack against opposite faces of the guanine nucleotide base. The synthetase recognizes neither the N7 position of guanine nucleotides nor the ribose group. Electron density for the guanine-5'-(beta,gamma-imido) triphosphate complex is consistent with a mixture of the triphosphate nucleoside and its hydrolyzed diphosphate nucleoside bound to the active site. The base, ribose, and alpha-phosphate positions overlap, but the beta-phosphates occupy different binding sites. The binding of guanosine-5'-(beta,gamma-methylene)triphosphate to the active site is comparable with that of guanosine-5'-(beta, gamma-imido)triphosphate. No electron density, however, for the corresponding diphosphate nucleoside is observed. In addition, electron density for bound Mg2+ is absent in these nucleotide complexes. The guanine nucleotide complexes of the synthetase are compared with complexes of other GTP-binding proteins and to a preliminary structure of the complex of GDP, IMP, Mg2+, and succinate with the synthetase. The enzyme, under conditions reported here, does not undergo a conformational change in response to the binding of guanine nucleotides, and minimally IMP and/or Mg2+ must be present in order to facilitate the complete recognition of the guanine nucleotide by the synthetase.  相似文献   

8.
Spo0F is a secondary messenger in the "two-component" system controlling the sporulation of Bacillus subtilis. Spo0F, like the chemotaxis protein CheY, is a single-domain protein homologous to the N-terminal activator domain of the response regulators. We recently reported the crystal structure of a phosphatase-resistant mutant Y13S of Spo0F with Ca2+ bound in the active site. The crystal structure of wild-type Spo0F in the absence of a metal ion is presented here. A comparison of the two structures reveals that the cation induces significant changes in the active site. In the present wild-type structure, the carboxylate of Asp11 points away from the center of the active site, whereas when coordinated to the Ca2+, as in the earlier structure, it points toward the active site. In addition, Asp54, the site of phosphorylation, is blocked by a salt bridge interaction of an Arg side chain from a neighboring molecule. From fluorescence quenching studies with Spo0F Y13W, we found that only the amino acid Arg binds to Spo0F in a saturable manner (Kd = 15 mM). This observation suggests that a small molecule with a shape complementary to the active site and having a guanidinium group might inhibit phosphotransfer between response regulators and their cognate histidine kinases.  相似文献   

9.
The genomic sequences of Methanococcus jannaschii and Methanobacterium thermoautotrophicum contain a structurally uncommon seryl-tRNA synthetase (SerRS) sequence and lack an open reading frame (ORF) for the canonical cysteinyl-tRNA synthetase (CysRS). Therefore, it is not clear if Cys-tRNACys is formed by direct aminoacylation or by a transformation of serine misacylated to tRNACys. To address this question, we prepared SerRS from two methanogenic archaea and measured the enzymatic properties of these proteins. SerRS was purified from M. thermoautotrophicum; its N-terminal peptide sequence matched the sequence deduced from the relevant ORF in the genomic data of M. thermoautotrophicum and M. jannaschii. In addition, SerRS was expressed from a cloned Methanococcus maripaludis serS gene. The two enzymes charged serine to their homologous tRNAs and also accepted Escherichia coli tRNA as substrate for aminoacylation. Gel shift experiments showed that M. thermoautotrophicum SerRS did not mischarge tRNACys with serine. This indicates that Cys-tRNACys is formed by direct acylation in these organisms.  相似文献   

10.
Prokaryotes have three amino acid-specific class II tRNAs that possess a characteristic long variable arm, tRNASer, tRNALeuand tRNATyr, while eukaryotes have only two, tRNASerand tRNALeu. Because of such a phylogenetic divergence in the composition of tRNA, the class II tRNA system is a good candidate for studying how the tRNA recognition manner has evolved in association with the evolution of tRNA. We report here a cross-species aminoacylation study of the class II tRNAs, showing the unilateral aminoacylation specificity between Escherichia coli and a yeast, Saccharomyces cerevisiae. Both SerRS and LeuRS from E.coli were unable to aminoacylate yeast class II tRNAs; in contrast, the yeast counterparts were able to aminoacylate E.coli class II tRNAs. Yeast seryl-tRNA synthetase was able to aminoacylate not only E.coli tRNASerbut also tRNALeuand tRNATyr, and yeast LeuRS was able to aminoacylate not only E.coli tRNALeubut also tRNATyr. These results indicate that the recognition manner of class II tRNA, especially the discrimination strategy of each aminoacyl-tRNA synthetase against noncognate class II tRNAs, is significantly divergent between E.coli and yeast. This difference is thought to be due mainly to the different composition of class II tRNAs in E.coli and yeast.  相似文献   

11.
The crystal structure of arginyl-tRNA synthetase (ArgRS) from Saccharomyces cerevisiae, a class I aminoacyl-tRNA synthetase (aaRS), with L-arginine bound to the active site has been solved at 2.75 A resolution and refined to a crystallographic R-factor of 19.7%. ArgRS is composed predominantly of alpha-helices and can be divided into five domains, including the class I-specific active site. The N-terminal domain shows striking similarity to some completely unrelated proteins and defines a module which should participate in specific tRNA recognition. The C-terminal domain, which is the putative anticodon-binding module, displays an all-alpha-helix fold highly similar to that of Escherichia coli methionyl-tRNA synthetase. While ArgRS requires tRNAArg for the first step of the aminoacylation reaction, the results show that its presence is not a prerequisite for L-arginine binding. All H-bond-forming capability of L-arginine is used by the protein for the specific recognition. The guanidinium group forms two salt bridge interactions with two acidic residues, and one H-bond with a tyrosine residue; these three residues are strictly conserved in all ArgRS sequences. This tyrosine is also conserved in other class I aaRS active sites but plays several functional roles. The ArgRS structure allows the definition of a new framework for sequence alignments and subclass definition in class I aaRSs.  相似文献   

12.
The interaction of a divalent metal ion with a leaving 3' oxygen is a central component of several proposed mechanisms of phosphoryl transfer. In support of this are recent kinetic studies showing that thiophilic metal ions (e.g., Mn2+) stimulate the hydrolysis of compounds in which sulfur takes the place of the leaving oxygen. To examine the structural basis of this phenomenon, we have solved four crystal structures of single-stranded DNA's containing either oxygen or sulfur at a 3'-bridging position bound in conjunction with various metal ions at the 3'-5' exonucleolytic active site of the Klenow fragment (KF) of DNA polymerase I from Escherichia coli. Two structures of normal ssDNA bound to KF in the presence of Zn2+ and Mn2+ or Zn2+ alone were refined at 2.6- and 2.25-A resolution, respectively. They serve as standards for comparison with other Mn2+- and Zn2+-containing structures. In these cases, Mn2+ and Zn2+ bind at metal ion site B in a nearly identical position to Mg2+ (Brautigam and Steitz (1998) J. Mol. Biol. 277, 363-377). Two structures of KF bound to a deoxyoligonucleotide that contained a 3'-bridging sulfur at the scissile phosphate were refined at 2.03-A resolution. Although the bridging sulfur compounds bind in a manner very similar to that of the normal oligonucleotides, the presence of the sulfur changes the metal ion binding properties of the active site such that Mn2+ and Zn2+ are observed at metal ion site B, but Mg2+ is not. It therefore appears that the ability of the bridging sulfur compounds to exclude nonthiophilic metal ions from metal ion site B explains the low activity of KF exonuclease on these substrates in the presence of Mg2+ (Curley et al. (1997) J. Am. Chem. Soc. 119, 12691-12692) and that the 3'-bridging atom of the substrate is influencing the binding of metal ion B prior to catalysis.  相似文献   

13.
Cyclic AMP-Phosphodiesterases (cAMP-PDEs) catalyse the hydrolysis cAMP to AMP and thus serve to modulate the ligand-->adenylate cyclase-->cAMP-->PKA signal transduction pathway. PDEs exist as a multigene family of enzymes that bear significant sequence homology in the catalytic domains. The sequence alignment of these domains has revealed the presence of two histidine motifs: motif I, HNXXH, and motif II, HDXXH. These amino acid sequences are canonical motifs, which act as ligands for divalent metal cations required for catalytic activity. In this paper, we report human monocyte PDE4A to be a zinc-binding protein. Substitution by site-directed mutagenesis of either histidine in motif I by serine, which is not a ligand for metals, results in complete loss of catalytic activity and loss of sensitivity to divalent metal cation activation. However, similar mutations in motif II gave proteins that retained both approximately 50% of initial activity and the ability to respond differentially to Mg2+, Mn2+ and Co2+. Moreover the motif II mutants exhibited both functional group requirements and retained their pKa values. When the inactive mutants were affinity-labelled with 8-BDB-TcAMP and probed with antibody against cAMP or antibody against PDE4A, Western blots were unaltered. These results show that the conserved histidines in motif I are an absolute requirement for catalytic activity, whereas motif II histidines are required only to achieve maximum activity.  相似文献   

14.
The equilibrium mixture of yeast enolase with substrate, 2-phospho-D-glycerate (2-PGA), and product, phosphoenolpyruvate (P-enolpyruvate), has been crystallized from solutions of poly(ethylene glycol) (PEG) at pH 8.0. Crystals belong to the space group C2 and have unit cell dimensions a = 121.9 A, b = 73.2 A, c = 93.9 A, and beta = 93.3 degrees. The crystals have one dimer per asymmetric unit. Crystals of the equilibrium mixture and of the enolase complex of phosphonoacetohydroxamate (PhAH) are isomorphous, and the structure of the former complex was solved from the coordinates of enolase-(Mg2+)2-PhAH [Wedekind, J. E., Poyner, R. R., Reed, G. H., & Rayment, I. (1994) Biochemistry 33, 9333-9342]. The current crystallographic R-factor is 17.7% for all recorded data (92% complete) to 1.8 A resolution. The electron density map is unambiguous with respect to the positions and liganding of both magnesium ions and with respect to the stereochemistry of substrate/product binding. Both magnesium ions are complexed to functional groups of the substrate/product. The higher affinity Mg2+ coordinates to the carboxylate side chains of Asp 246, Glu 295, and Asp 320, both carboxylate oxygens of the substrate/product, and a water molecule. One of the carboxylate oxygens of the substrate/product also coordinates to the lower affinity Mg2+-thus forming a mu-carboxylato bridge. The other ligands of the second Mg2+ are a phosphoryl oxygen of the substrate/product, two water molecules, and the carbonyl and gamma-oxygens of Ser 39 from the active site loop. The intricate coordination of both magnesium ions to the carboxylate group suggests that both metal ions participate in stabilizing negative charge in the carbanion (aci-carboxylate) intermediate. The epsilon-amino group of Lys 345 is positioned to serve as the base in the forward reaction whereas the carboxylate side chain of Glu 211 is positioned to interact with the 3-OH of 2-PGA. The structure provides a candid view of the catalytic machinery of enolase.  相似文献   

15.
Porphobilinogen synthase (PBGS) is a metalloenzyme which catalyzes the asymmetric condensation of two molecules of 5-aminolevulinic acid (ALA) to form porphobilinogen. There are at least four types of PBGS, categorized according to metal ion usage. The PBGS from Bradyrhizobium japonicum requires Mg(II) in catalytic metal site A, has an allosteric Mg(II) in metal site C, and also contains an activating monovalent cation binding site [Petrovich et al. (1996) J. Biol. Chem. 271, 8692-8699]. 13C NMR and Mn(II) EPR have been used to probe the active site and Mg(II) binding sites of this 310 000 dalton protein. The 13C NMR chemical shifts of enzyme-bound product demonstrate that the chemical environment of porphobilinogen bound to B. japonicum PBGS is different from that of PBGS which contains Zn(II) rather than Mg(II) at the active site. Use of Mn(II) in place of Mg(II) broadens the NMR resonances of enzyme-bound porphobilinogen, providing evidence for a direct interaction between MnA and product at the active site. Prior characterization of the enzyme defined conditions in which the divalent cation occupies either the A or the C site. Mimicking these conditions allows Mn(II) EPR observation of either MnC or MnA. The EPR spectrum of MnC is significantly broader and less intense than "free" Mn(II), but relatively featureless. The EPR spectrum of MnA is broader still and more asymmetric than MnC. The EPR data indicate that the coordination spheres of the two metals are different.  相似文献   

16.
Mapping of the conserved sequence regions in the restriction endonucleases MunI (C/AATTG) and EcoRI (G/AATTC) to the known X-ray structure of EcoRI allowed us to identify the sequence motif 82PDX14EXK as the putative catalytic/Mg2+ ion binding site of MunI [Siksnys, V., Zareckaja, N., Vaisvila, R., Timinskas, A., Stakenas, P., Butkus, V., & Janulaitis, A. Gene (1994) 142, 1-8]. Site-directed mutagenesis was then used to test whether amino acids P82, D83, E98, and K100 were important for the catalytic activity of MunI. Mutation P82A generated only a marginal effect on the cleavage properties of the enzyme. Investigation of the cleavage properties of the D83, E98, and K100 substitution mutants, however, in vivo and in vitro, revealed either an absence of catalytic activity or markedly reduced catalytic activity. Interestingly, the deleterious effect of the E98Q replacement in vitro was partially overcome by replacement of the metal cofactor used. Though the catalytic activity of the E98Q mutant was only 0.4% of WT under standard conditions (in the presence of Mg2+ ions), the mutant exhibited 40% of WT catalytic activity in buffer supplemented with Mn2+ ions. Further, the DNA binding properties of these substitution mutants were analyzed using the gel shift assay technique. In the absence of Mg2+ ions, WT MunI bound both cognate DNA and noncognate sequences with similar low affinities. The D83A and E98A mutants, in contrast, in the absence of Mg2+ ions, exhibited significant specificity of binding to cognate DNA, suggesting that the substitutions made can simulate the effect of the Mg2+ ion in conferring specificity to the MunI restriction enzyme.  相似文献   

17.
Saccharomyces cerevisiae seryl-tRNA synthetase (SerRS) contains a 20-amino acid C-terminal extension, which is not found in prokaryotic SerRS enzymes. A truncated yeast SES1 gene, lacking the 60 base pairs that encode this C-terminal domain, is able to complement a yeast SES1 null allele strain; thus, the C-terminal extension in SerRS is dispensable for the viability of the cell. However, the removal of the C-terminal peptide affects both stability of the enzyme and its affinity for the substrates. The truncation mutant binds tRNA with 3.6-fold higher affinity, while the Km for serine is 4-fold increased relative to the wild-type SerRS. This indicates the importance of the C-terminal extension in maintaining the overall structure of SerRS.  相似文献   

18.
Recent crystallographic studies on Escherichia coli inorganic pyrophosphatase (E-PPase) have identified three Mg2+ ions/enzyme hexamer in water-filled cavities formed by Asn24, Ala25, and Asp26 at the trimer-trimer interface (Kankare, J., Salminen, T., Lahti, R., Cooperman, B., Baykov, A. A., and Goldman, A. (1996) Biochemistry 35, 4670-4677). Here we show that D26S and D26N substitutions decrease the stoichiometry of tight Mg2+ binding to E-PPase by approximately 0.5 mol/mol monomer and increase hexamer stability in acidic medium. Mg2+ markedly decelerates the dissociation of enzyme hexamer into trimers at pH 5.0 and accelerates hexamer formation from trimers at pH 7.2 with wild type E-PPase and the N24D variant, in contrast to the D26S and D26N variants, when little or no effect is seen. The catalytic parameters describing the dependences of enzyme activity on substrate and Mg2+ concentrations are of the same magnitude for wild type E-PPase and the three variants. The affinity of the intertrimer site for Mg2+ at pH 7.2 is intermediate between those of two Mg2+ binding sites found in the E-PPase active site. It is concluded that the metal ion binding site found at the trimer-trimer interface of E-PPase is a high affinity site whose occupancy by Mg2+ greatly stabilizes the enzyme hexamer but has little effect on catalysis.  相似文献   

19.
A cluster of surface amino acid residues on Escherichia coli thioredoxin were systematically mutated in order to provide the molecule with an ability to chelate metal ions. The combined effect of two histidine mutants, E30H and Q62H, gave thioredoxin the capacity to bind to nickel ions immobilized on iminodiacetic acid- and nitrilotriacetic acid-Sepharose resins. Even though these two histidines were more than 30 residues apart in thioredoxin's primary sequence, they were found to satisfy the geometric constraints for metal ion coordination as a result of the thioredoxin tertiary fold. A third histidine mutation, S1H, provided additional metal ion chelation affinity, but the native histidine at position 6 of thioredoxin was found not to participate in binding. All of the histidine mutants exhibited decreased thermal stability as compared with wild-type thioredoxin; however, the introduction of an additional mutation, D26A, increased their melting temperatures beyond that of wild-type thioredoxin. The metal chelating abilities of these histidine mutants of thioredoxin were successfully utilized for convenient purifications of human interleukin-8 and -11 expressed in E. coli as soluble thioredoxin fusion proteins.  相似文献   

20.
Acetohydroxy acid isomeroreductase catalyzes the conversion of acetohydroxy acids into dihydroxy valerates. This reaction is the second in the synthetic pathway of the essential branched side chain amino acids valine and isoleucine. Because this pathway is absent from animals, the enzymes involved in it are good targets for a systematic search for herbicides. The crystal structure of acetohydroxy acid isomeroreductase complexed with cofactor NADPH, Mg2+ ions and a competitive inhibitor with herbicidal activity, N-hydroxy-N-isopropyloxamate, was solved to 1.65 A resolution and refined to an R factor of 18.7% and an R free of 22.9%. The asymmetric unit shows two functional dimers related by non-crystallographic symmetry. The active site, nested at the interface between the NADPH-binding domain and the all-helical C-terminus domain, shows a situation analogous to the transition state. It contains two Mg2+ ions interacting with the inhibitor molecule and bridged by the carboxylate moiety of an aspartate residue. The inhibitor-binding site is well adjusted to it, with a hydrophobic pocket and a polar region. Only 24 amino acids are conserved among known acetohydroxy acid isomeroreductase sequences and all of these are located around the active site. Finally, a 140 amino acid region, present in plants but absent from other species, was found to make up most of the dimerization domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号