首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Superacid-supported catalytic membranes were found to be active and very selective in the partial oxidation of light paraffins (C1–C2) with H2O2 under mild conditions (TR: 80–110°C; PR: 1.4 bar) in a three-phase catalytic membrane reactor (3PCMR). Among different catalytic membranes investigated, Nafion-based ones showed the best performance in terms of both activity and selectivity. Addition of Fe2+ ions in the liquid phase enhances the reaction rate, however, a volcano-shaped trend between reaction rate and concentration of Fe2+ was observed. Reaction temperature drastically affects both reaction rate and product distribution. A reaction pathway based on the electrophilic hydroxylation of the C–H bond on superacid sites and subsequent reaction of the activated paraffin with OH radicals has been proposed.  相似文献   

2.
The Nafion/zeolite composite membranes were synthesized for polymer electrolyte fuel cells (PEMFCs) by adding zeolite in the matrix of Nafion polymer. Two kinds of zeolites, Analcime and Faujasite, having different Si/Al ratio were used. The physico-chemical properties of the composite membranes such as water uptake, ion-exchange capacity, hydrogen permeability, and proton conductivity were determined. The fabricated composite membranes showed the significant improvement of all tested properties compared to that of pure Nafion membrane. The maximum proton conductivity of 0.4373 S cm−1 was obtained from Nafion/Analcime (15%) at 80 °C which was 6.8 times of pure Nafion (0.0642 S cm−1 at 80 °C). Conclusively, Analcime exhibited higher improvement than Faujasite.  相似文献   

3.
Durability is a major limitation of current proton exchange membrane fuel cells. Mechanical stress due to hygro-thermal cycling is one failure mechanism of the polymer electrolyte membrane (PEM). In a fuel cell the PEM is highly constrained in the membrane plane and relatively unconstrained in the through-thickness direction, leading to primarily biaxial loading upon hygro-thermal cycling. The rate, temperature, and hydration dependent elastic-viscoplastic mechanical behavior of Nafion, the benchmark PEM, has been extensively investigated in uniaxial tension in prior work which also served as a data basis for a three dimensional constitutive model. Here, the important effects of the biaxiality of the loading conditions on the elastic-viscoplastic Nafion stress-strain behavior are investigated for the first time via experiments and simulation. Biaxial stress-strain behaviors were shown to exhibit similar features to uniaxial behavior including linear elasticity followed by a highly non-linear transition to yield followed by post-yield strain hardening with highly non-linear unloading and reloading; these features were each quantitatively dependent on the biaxiality of the loading conditions. The constitutive model was found to successfully quantitatively predict the loading behavior and its dependence on biaxiality. The constitutive model was also found to predict the magnitude of the yield shoulder during unloading and reloading, but to underestimate the gradual nature of both the forward and reverse plastic deformation processes as well as the strain recovery at zero load. These errors are consistent with those seen in the uniaxial model indicating that the framework used to incorporate the uniaxial behavior into a three dimensional model is capable of predicting the biaxial deformation response of the membrane.  相似文献   

4.
The performance of a proton exchange membrane fuel cell (PEMFC) with gas diffusion cathodes having the catalyst layer applied directly onto Nafion membranes is investigated with the aim at characterizing the effects of the Nafion content, the catalyst loading in the electrode and also of the membrane thickness and gases pressures. At high current densities the best fuel cell performance was found for the electrode with 0.35 mg Nafion cm−2 (15 wt.%), while at low current densities the cell performance is better for higher Nafion contents. It is also observed that a decrease of the usual Pt loading in the catalyst layer from 0.4 to ca. 0.1 mg Pt cm−2 is possible, without introducing serious problems to the fuel cell performance. A decrease of the membrane thickness favors the fuel cell performance at all ranges of current densities. When pure oxygen is supplied to the cathode and for the thinner membranes there is a positive effect of the increase of the O2 pressure, which raises the fuel cell current densities to very high values (>4.0A cm−2, for Nafion 112—50 μm). This trend is not apparent for thicker membranes, for which there is a negligible effect of pressure at high current densities. For H2/air PEMFCs, the positive effect of pressure is seen even for thick membranes.  相似文献   

5.
We report a pervaporation process to remove water from a solution containing ionic liquid (IL) + solvent + water. Specifically, Nafion-based membranes were employed for the separation, and tributylmethylammonium dimethylphosphate and N-methyl-2-pyrrolidone (NMP) were the IL and solvent, respectively. Membrane swelling in contact with the IL–NMP–H2O solution was accommodated by judicious use of gaskets and membrane supports. The pervaporation fluxes of water and NMP increased with temperature and flow rate of the permeate sweep gas. Among the membranes examined, a commercially available Nafion membrane (XL, Ion Power) provided the highest water (10 mg h?1 cm?2) and NMP (182 mg h?1 cm?2) fluxes. The results show that pervaporation separation is a technologically feasible method to decrease the water content of an IL–NMP–H2O solution from 1 to 0.5 wt%.  相似文献   

6.
Dense BICOVOX membrane, bulk BICOVOX/Au cermet membrane and BICOVOX membrane with a BICOVOX/Au cermet on its surfaces are investigated in the partial oxidation of propane under open circuit voltage (OCV) and under electrical bias at 700 °C. The propane conversion remains in the range 10–12% whatever the conditions of polarisation. Mostly cracking products are observed. Hydrogen is the main product with a selectivity around 55–60%. At OCV, no product of oxidation is detected except water which can not be quantified. On the membrane with BICOVOX/Au cermet electrodes on surface, traces of CO are observed as well as a small increase of propylene content under anodic polarisation. This can be explained by partial oxidation and oxidative dehydrogenation of propane, respectively. An anodic polarisation leads to a decrease of hydrogen due to its oxidation into water. In contrast, an increase of the hydrogen content is observed under cathodic polarisation. The effects on the membrane are modest, but they show the possibility that such a system offers for modifying the catalytic properties of membrane materials in a CDMR.  相似文献   

7.
The counter-ions of montmorillonite have been exchanged for ammonium cations containing either a sulfonic acid or a carboxylic acid in order to improve the performances of sulfonated membranes in direct methanol fuel cell. These layered silicates have been dispersed within Nafion® by solution mixing. Comparison with conventional organo-modified montmorillonite (Cloisite 30B) shows that the incorporation of carboxylic acid in the clay galleries improves the filler dispersion and, consequently, the methanol barrier properties. Moreover, the negative impact of Cloisite 30B on the ionic conductivity is restricted.  相似文献   

8.
A first principles model is developed to describe and predict the protonic conductivity of fully hydrated Nafion membranes and its peculiar non-linear dependence on membrane thickness, potential and PH2. The model focuses on the surface migration of protons between adjacent sulfonate groups and utilizes the Poisson-Boltzmann charge distribution around each proton combined with the basic Gamow equation of quantum mechanics for proton tunneling. It is shown that the proton tunneling distance equals the proton wavelength and that each proton surrounded by its Debye-Hückel cloud behaves as a leaking nanobattery.The model, which contains no adjustable parameters, is solved analytically and its predictions are in semiquantitative agreement with experiment, including the magnitude of the conductivity, its linear increase with membrane thickness, its exponential increase with potential and its strong dependence on PH2.  相似文献   

9.
The PEMFC performance of MEAs prepared from Nafion-212 (thickness 50 μm, Du Pont Co), porous poly(tetrafluoro ethylene) (PTFE, thickness 15 ~ 18 μm) film reinforced Nafion (NF, thickness 20 ± 2 μm), silicate hybridized NF (NF-Si, thickness 21 ± 2 μm), and zirconium phosphate hybridized NF (NF-Zr, thickness 21 ± 2 μm) membranes were investigated at 110 °C/ 51.7% RH, 120 °C/ 38.2% RH, and 130 °C/ 28.6% RH. We show PEMFC performances of these MEAs decrease in the sequence of: NF-Zr> NF-Si> NF> Nafion-212. The NF, NF-Si, and NF-Zr membranes have lower membrane thickness and lower Nafion content and require less water for proton transport than Nafion-212 at temperatures above 110 °C, and thus have higher conductivity and better PEMFC performance than Nafion-212. Incorporating silicate and zirconium phosphate into NF membranes enhances water retention of membranes at temperatures above 110 °C and improves PEMFC performances. Besides enhancing water retention, incorporating zirconium phosphate into membranes also provides more routes for proton transport via H+ exchange between H3 +O and HPO4-Zr- and between H2 +PO4-Zr- and HPO4-Zr-. Thus NF-Zr has a higher conductivity and better PEMFC performance than NF and NF-Si.  相似文献   

10.
In this study, dilute Nafion solutions consisting of solvents with various dielectric constants ? and solubility parameters δ, i.e. N,N′-dimethyl acetamide, N,N′-dimethyl formamide, N-methyl formamide, methanol-water mixture (4/1 g/g), ethanol-water mixture (4/1 g/g), and isopropanol-water mixture (4/1 g/g), were freeze dried and the conformations of Nafion molecules in dilute solutions were observed using transmission electron microscope. The membranes were prepared by solution casting from these solutions and evaporating the solvents at temperatures below TG of Nafion, then annealing the membranes at 150 °C which was ∼50 °C above TG of Nafion. We show Nafion molecular conformations in dilute solutions are strongly influenced by δ and ? of solvents. And, thus the morphology, water uptake, proton conductivity, and methanol permeability of membranes prepared by solution casting are also influenced by δ and ? of solvents.  相似文献   

11.
Nafion膜由于其良好的电化学性能被广泛应用,但其溶胀性即膜内水分子的存在和含量的大小对膜的性能产生影响,因为水分子会与膜基团发生作用.在制取几种不同端基的Nafion膜的基础上,应用红外光谱方法比较膜的不同基团对水分子结构对称性的不同影响,从而探讨基团与水分子的作用方式.膜内的阳离子Lewis酸性越强,对-OH的亲和性越强,水分子不对称性越大,其O-H伸缩振动越困难,振动频率越大,强度越强;膜内的阴离子,Lewis碱性越强,水分子O-H伸缩振动越困难,频率越大,基团的这种效应与溶液中氢键的作用相反.  相似文献   

12.
Titania-supported palladium catalysts modified by tungsten have been tested for the total oxidation of propane. The addition of tungsten significantly enhanced the catalytic activity. Highly active catalysts were prepared containing a low loading of 0.5 wt.% palladium, and activity increased as the tungsten loading was increased up to 6 wt.%. Catalysts were characterised using a variety of techniques, including powder X-ray diffraction, laser Raman spectroscopy, X-ray photoelectron spectroscopy, temperature-programmed reduction and aberration-corrected scanning transmission electron microscopy. Highly dispersed palladium nanoparticles were present on the catalyst with and without the addition of WOx. However, the addition of WOx slightly increases the average palladium particle size, and there was some evidence for the Pd forming epitaxial islands on the support in the tungsten-doped samples. Surface analysis identified a combination of Pd0 and Pd2+ on a Pd/TiO2 catalyst, whereas all of the Pd loading was found in the form of Pd2+ with the addition of tungsten into the catalysts. At low tungsten loadings, isolated monotungstate and some polytungstate species were highly dispersed over the titania support. The concentration of polytungstate species increased as the loading was increased, and it was also promoted by the presence of palladium. The coverage of the highly dispersed tungstate species over the titania also increased as the tungsten loading increased. Some tungstate species were also found to be associated with the palladium oxide particles, and there was an enrichment of oxidised tungsten species at the peripheral interface of the palladium oxide nanoparticles and the titania. Sub-ambient temperature–programmed reduction experiments identified an increased concentration of highly reactive species on catalysts with palladium and tungsten present together, and we propose that the new WOx-decorated interface between PdOx and TiO2 particles may be responsible for the enhanced catalytic activity in the co-impregnated catalysts.  相似文献   

13.
Palladium/Nafion composite membranes were synthesized by supercritical impregnation method to reduce methanol crossover in direct methanol fuel cells. The palladium complexes used in this study were palladium(II) acetylacetonate, palladium(II) hexafluoroacetylacetonate, and palladium (II) bis(2,2,6,6-tetramethyl-3,5-heptane-dionato). The palladium complexes with various loading amounts from 0.010 to 0.050 g in a high-pressure vessel were dissolved in supercritical CO2, and impregnated into Nafion membranes.The SEM images indicated that the palladium complexes were successfully deposited into Nafion membrane, and there were no problems such as cracking and pinhole. The EDX analysis showed that the palladium particles were distributed both at the membrane surface and also extended deeper into the membrane. The TEM images indicated that thin dense band of agglomerated Pd particles can be observed near the membrane surface, and a significant number of isolated Pd particles can be seen deeper into the membrane, when Pd(II) acetylacetonate was used as palladium complex. When palladium(II) hexafluoroacetylacetonate and palladium (II) bis(2,2,6,6-tetramethyl-3,5-heptane-dionato) were used, dense band of agglomerated Pd particles cannot be observed near the membrane surface, and small Pd particles were observed inside the membranes.The XRD analysis indicated that the crystalline peak of Nafion membrane at 2θ = 17° increased with the supercritical CO2 treatment. It means that the degree of crystallinity for Nafion membrane increased by supercritical CO2. The metal Pd peak at 2θ = 40° was observed for the Pd/Nafion membranes.The methanol crossover was reduced and the DMFC performance was improved for the Pd/Nafion membranes compared with Nafion membrane at 40 °C. The successful preparation of Pd/Nafion membranes by supercritical CO2 demonstrated an effective alternative way for modifying membranes and for depositing electrode catalytic nanoparticles onto electrolyte.  相似文献   

14.
Mono- and bimetallic catalytic membranes were prepared via deposition of Pd and Cu onto macroporous polymeric membrane. The membranes were employed to catalyze the reaction of nitrate ions reduction by hydrogen in water. Monometallic Pd- and Cu-loaded membranes were poorly active in the reaction, while bimetallic (Pd+Cu)-loaded membranes exhibited high catalytic activity. Combination of monometallic Pd- and Cu-loaded membranes in one stack resulted in high catalytic activity, similar to that of bimetallic (Pd+Cu)-loaded membranes. The results of this study provide experimental support for a hypothesis on hydrogen spillover as a part of the molecular mechanism of nitrate ions reduction by hydrogen in water over palladium–copper catalytic system.  相似文献   

15.
Cu(II) and Mn(II) metals embedded on mesoporous SBA-15 were synthesized by co-precipitation technique.The support and catalysts were characterized by SEM–EDX,TEM,BET,XRD and ICP-AES methods.The catalytic activity of these catalysts was evaluated for styrene oxidation at various reaction conditions such as styrene to TBHP mole ratio,temperature,catalyst amount by using TBHP as an oxidizing agent.Major reaction products were styrene oxide and benzaldehyde and highest styrene conversion(97.3%) was observed at styrene to TBHP mole ratio of 1:4,temperature at 80 °C and 20 mg of catalyst.Further,the recyclability of the catalysts was observed and found that they can be recycled three times without major loss in their activity and selectivity.  相似文献   

16.
This work focuses on the effect of Nafion ionomer aggregation within the Pd catalytic electrode on electrocatalytic oxidation of formic acid. By a simple heat-treatment, the particle sizes of both Nafion ionomers in Nafion solution and congeries formed between Pd nanoparticles and Nafion ionomers in the catalyst ink decrease and their size distribution becomes narrow. Heat treatment of the catalyst ink leads to a significantly enhanced catalytic activity for formic acid oxidation on the Pd catalytic electrode. Such an enhancement is ascribed to the improvement in catalyst utilization verified by CO stripping voltammograms and to the decrease in charge-transfer resistance of oxidation reaction confirmed by impedance analysis. Typical XPS analysis shows that there are at least two kinds of Pd and S surface states within the catalytic electrode with the ink pre-heated at 25 °C and only one kind of Pd and S surface state at 80 °C, indicative of a better dispersion between Pd nanoparticles and smaller Nafion ionomers at a higher heat treatment temperature. Furthermore, the decrease in congeries size within the anode catalyst ink leads to a significant decrease in Nafion loading within the catalytic layer and a remarkable improvement in direct formic acid fuel cell's performance.  相似文献   

17.
ME-doped γ-Bi4V2O11 (BIMEVOX) oxides are highly oxide ion conducting materials and this property may be profitably used in selective oxidation of hydrocarbons. The catalytic properties of BICUVOX and BICOVOX when shaped as dense membranes displayed in catalytic dense membrane reactor are examined in the oxidation of propene and of propane. Mirror-polished BICUVOX and BICOVOX membranes studied previously were poorly active for propene oxidation because of a small number of active sites but showed an excellent stability and reproducibility (lasting more than 1 month) during which products of mild oxidation (acrolein, hexadiene) and CO were formed. Membranes with depolished surfaces exhibit high conversions of propene (up to 60 mol%), and also of propane (up to 20 mol%) but – contrary to mirror-polished membranes – a complex transient behaviour is observed during which syngas production occurs. The membrane polarisation followed by in situ solid electrolyte potentiometry shows that the oxygen reservoir is far higher than expected on the reaction side which is separated (by the membrane) from the oxidising side where (diluted) oxygen is reduced to O2− specie. The influence of oxygen partial pressure on the catalytic performance suggests that the electronic conductivity of the material is limiting the oxygen flux through the membrane, and thus is determining the catalytic properties and transient behaviours of depolished membranes.  相似文献   

18.
Lithiated Nafion 112 ionomer was characterized by FT-IR spectroscopy, AC impedance, and cyclic voltammetry. The ionomer swollen with mixed solvents of propylene carbonate (PC) and ethylene carbonate shows ionic conductivity of 8.18×10–5Scm–1 at 25°C and good electrochemical stability to allow operation in Li/ionomer/LiCoO2 cells. The discharge capacity of the first cycle is 126mAhg–1. Significant capacity loss occurs during cycling due to the presence of PC. AC impedance shows that the passive layer formed at the Li/ionomer interface dominates the cycling performance of the cell.  相似文献   

19.
Pt/Nafion复合膜的研制   总被引:6,自引:0,他引:6  
Pt/Nafion复合膜的研制段天平夏代宽刘期崇王建华(四川联合大学化工系,成都610065)关键词Pt/Nafion膜内沉积浸渍-还原1前言固体聚合物电解质技术(SPE)将反应与分离相结合,在能量高效转换领域具有重要应用背景。铂附着于Nafion...  相似文献   

20.
Molecular dynamics computer simulations of water/Nafion mixtures using an all-atom model were performed as a function of temperature and humidity. The simulations are aimed at investigating processes and structures on the picosecond to nanosecond time scale in the nano-phase-separated material with its technological relevance for low temperature fuel cells. Characteristic differences in aqueous pore structure were observed for systems whose water content was varied between 5 and 10 molecules per acid group in the polymer. As expected, proton transport increases significantly with increasing humidity, its mechanism is dominated by the Grotthus structural diffusion mechanism in accordance with earlier studies in simplified model pores. On the simulated time scale no unambiguous conclusions on the role of polymer dynamics for the transport in dry membranes can be drawn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号