首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
液膜厚度对凝结传热具有较大影响,且传热管管型影响着凝结液膜形成及排除。为了通过改变管型降低液膜厚度达到强化传热的目的,对圆管、椭圆管及滴形管等三种管型凝结液膜建立了相应的物理及数学模型,并计算了液膜沿管壁的厚度分布及传热系数;分析了三种管型对液膜传热的影响。结果表明:在气汽混合流体凝结传热过程中,不同管型其凝结液膜厚度差别较大;壁面温度和混合流体速度对液膜传热均有影响;相同条件下滴形管管壁上所形成的液膜,其平均厚度较薄,传热系数较高,因此滴形管传热性能优于其他管型。  相似文献   

2.
针对外波纹管管外降膜流动过程,采用实验结合数值模拟的方法,考察了液体喷淋密度、管间距和管径变化对液膜厚度周向分布的影响,并与光滑管进行了比较,同时分析了外波纹管管外液膜速度分布特性。结果表明:光滑管外液膜厚度由上至下沿周向呈先减小、后增加的趋势,在90°~120°之间液膜最薄;外波纹管去除波纹间凹槽内的液体后,波纹外的液膜厚度数值及其周向分布规律与相同直径的光滑管相似,周向平均液膜厚度随着液体喷淋密度的增加、管间距及管径的减小而增大;液膜沿周向分布的均匀程度及流动速度大小均与液膜厚度有关,波纹外液膜沿周向分布的不均匀性随着液膜厚度的增加而增加,气液界面处的液体速度沿周向分布规律与液膜厚度分布规律相反;相邻两波峰间凹槽内的液体存在局部循环流动。  相似文献   

3.
对水平螺旋槽管壁面降膜形成及传热特性进行了理论和实验研究,得到了液膜厚度及速度的解析及数值解.结果表明,降膜液膜特性主要受槽道结构和液膜表面张力控制.管壁温度沿周向向下逐渐升高,而且在定热流密度下保持不变,而液膜温度则沿周向逐渐上升.相比光管,螺旋槽管降膜具有更高的传热系数.  相似文献   

4.
竖直螺旋槽管壁面液膜在蒸发/冷凝时的传热特性的研究   总被引:1,自引:1,他引:1  
研究竖直螺旋槽管壁面液膜在传热条件下的液膜形成及流动特性,建立了单组分流体的物理和数学模型并得出解析解,且分析了壁面液膜在蒸发,冷凝及无热传输时的液膜厚度分布及速度分布,结果表明,液膜的形状主要受表面张力影响,在表面内弯处流膜较厚,而在槽道起始部液膜较薄,相对于光滑直管,竖直螺旋槽管壁面液膜具有均匀的厚度分布和更好的传热传质性质,特别在冷凝时壁面液膜更薄且分布更加均匀。  相似文献   

5.
汽轮机低压缸湿蒸汽区中,静叶片、动叶片及汽缸壁表面存在水膜的沉积、流动,在高速汽流拖拽撕裂下形成的较大水滴,会造成动叶片的严重水蚀,实时监测液膜厚度,对于叶片防护及机组的安全运行具有重要意义。采用开式微波同轴谐振腔作为液膜厚度测量传感器,根据谐振腔等效电路,建立了水膜厚度测量数学模型,推导了液膜厚度的测量关系式。设计了探针耦合同轴谐振腔传感器,仿真分析了谐振频率随水膜厚度的变化关系,确定了测量关系式中的待定系数,计算了不同温度条件下,液膜厚度随谐振频率的变化。  相似文献   

6.
为深入研究液膜内的微观传热机理,对水平管外降膜蒸发的传热特性进行了数值模拟,获得了液膜厚度、液膜流动速度和传热系数等热力参数在液膜内的分布特性。通过与实验数据的对比验证了数学模型的准确性。研究结果表明:在饱和蒸发温度62℃、传热温差2.8℃、管外径25.4mm和液膜入口速度0.071~0.15 m/s条件下,沿圆周方向,液膜厚度减小,传热系数增加,直至达到液膜热力发展区,膜厚和传热系数趋于稳定;受液膜内温度变化的影响,液膜内的粘度、表面张力和导热系数的变化对液膜传热特性产生显著影响。  相似文献   

7.
针对燃油在离心喷嘴中的内部流动及其外部雾化过程,采用VOF-DPM模型对其进行了数值模拟研究。分析了压力对喷嘴出口处空气芯大小和液膜厚度的影响,得到了液膜破碎长度和雾化锥角等雾化特性,应用实验测试结果对数值模拟进行了验证,并与流体体积函数法(VOF)和离散相追踪法(DPM)进行了对比。结果表明:VOF-DPM模型可以真实反映离心喷嘴的内部流动和外部雾化特性,研究发现了与实际雾化过程符合的液膜破碎存在孔洞破碎和边缘破碎两种形式;捕捉到了在液膜表面的波动及气动力共同作用下液膜失稳破碎形成液滴的过程;燃油流动及雾化特性随着压力增加发生变化,喷嘴内空气芯直径增大,出口处液膜厚度减小,液膜的破碎长度下降。  相似文献   

8.
朱晓静  邱庆刚  权生林 《太阳能学报》2016,37(12):3207-3213
采用VOF模型对水平管表面液膜厚度分布进行数值研究,并将结果与实验数据进行比较,二者吻合较好。结果表明:液膜沿水平管周向的流动可分为瞬态过程及之后的稳态过程,瞬态过程包括液体自由下降、冲击管壁、液膜发展、充分发展以及脱离管壁5个阶段。稳态过程中,液膜厚度沿圆管周向分布为先减小,再增大。水平管上、下半部液膜厚度分布不对称,顶部和底部存在两个切向速度滞点,下部滞点处可能会出现无液区。随着液膜雷诺数的增大,液膜厚增大,下部无液区范围也增大。较大的管径会导致液膜在同一角位置处流速增加,液膜厚度减小。  相似文献   

9.
《动力工程学报》2016,(4):265-270
为了研究排液板对水平圆管外降膜流动与传热的影响,建立了水平圆管底部加装排液板的物理模型,采用流体体积函数(VOF)模型对其管外降膜流动进行了数值模拟,并将数值模拟结果与文献中的实验数据进行了对比.结果表明:加装排液板的水平圆管的平均液膜厚度比未加装排液板的水平圆管薄,管壁局部Nu大,排液板起到加速排液及减薄液膜的作用,有利于强化传热;排液板高度越大,管外同一周向角位置处的液膜厚度越薄,管壁局部Nu越大;排液板厚度较小或者较大都不能有效发挥加速排液的作用.  相似文献   

10.
水平管降膜蒸发器广泛应用在现代工业的诸多领域,其优化设计和高效应用对于节能和环保具有重要意义.介绍了水平管降膜蒸发的基本原理,对水平管外液膜厚度分布、新型强化管换热性能及布液器结构的最新研究进展进行了综述,回顾了水平管降膜蒸发的研究成果.布液器是系统的关键部件,其性能优劣在很大程度上影响系统的稳定性和效率.在此基础上提出了一种新型布液器的设计方案,为降膜蒸发器的进一步研究和设计提供了参考.  相似文献   

11.
A simple calculation method, validated by experimental measurements, is proposed to determine the meridian line of a pressurized, initially plane, elastic membrane. Provided the thickness variation is negligible, a nearly spherical shape can be obtained when a horizontal disk is filled with a liquid. Aluminized polyester film mirrors so shaped are proposed to form solar concentrators. Dimensions of cost effective mirrors of this kind are therefore discussed as to physical feasability. Sphereshaped polyester film mirrors are more suitable than inflated ones for both parabolic dish and small fixed spherical collectors.  相似文献   

12.
Oxygen diffusion in the cathode catalyst layer (CCL) is crucial to the high performance of polymer electrolyte membrane fuel cells (PEMFCs), especially in high current density or concentration loss regions. Recently, PEMFC performance has been reported to be enhanced by increasing CCL pore size and pore volume due to the reduction of diffusion resistance by capillary water equilibrium [Yim et al., Electrochimica Acta 56 (2011) 9064–9073]. Herein, we simulate these experimental results utilizing a new one-dimensional PEMFC model considering the effects of accumulated water film in CCL on oxygen diffusion. Two CCL microstructures were numerically generated based on agglomerate models to examine the experimental results obtained for two membrane electrode assembly (MEA) samples with different CCL porosity. The effective diffusivity of oxygen in the CCL was estimated by performing auxiliary simulations of oxygen concentration in CCL microstructures covered by a film of liquid water, with exponential correlation obtained between effective diffusivity and the thickness of the above film. Polarization curves predicted by the present model were in good agreement with experimental results. In agreement with the results of Yim et al., the present model predicts that the MEA featuring a CCL with smaller pores (which are more easily filled by liquid water) should exhibit a larger concentration loss at high current densities.  相似文献   

13.
A numerical study is reported to investigate the liquid film cooling in a rocket combustion chamber. Mass, momentum and heat transfer characteristics through the interface are considered in detail. A marching procedure is employed for solution of the respective governing equations for the liquid film and gas stream together. The standard turbulence kε model is used to simulate the turbulence gas flow and a modified van Driest model is adopted to simulate the turbulent liquid film flow. Radiation of gas stream is also considered and simulated with the flux model. Downstream of the liquid film the gaseous film cooling is numerically studied simultaneously. Results are presented for a mixed gases–water system under different condition. Various effects on the liquid film length are examined in detail. There is a good agreement between the numerical prediction and experimental result on the liquid film length.  相似文献   

14.
Flow boiling in micro channels is attracting large attention since it leads to large heat transfer area per unit volume. Generated vapor bubbles in micro channels are elongated due to the restriction of channel wall, and thus slug flow becomes one of the main flow regimes. In slug flow, sequential bubbles are confined by the liquid slugs, and thin liquid film is formed between tube wall and bubble. Liquid film evaporation is one of the main heat transfer mechanisms in micro channels and liquid film thickness is a very important parameter which determines heat transfer coefficient. In the present study, liquid film thickness is measured by laser focus displacement meter under flow boiling condition and compared with the correlation proposed for an adiabatic flow. The relationship between liquid film thickness and heat transfer coefficient is also investigated. Initial liquid film thickness under flow boiling condition can be predicted well by the correlation proposed under adiabatic condition. Under flow boiling condition, liquid film surface fluctuates due to high vapor velocity and shows periodic pattern against time. Frequency of periodic pattern increases with heat flux. At low quality, heat transfer coefficients calculated from measured liquid film thickness show good accordance with heat transfer coefficients obtained directly from wall temperature measurements.  相似文献   

15.
对方形管进口区蒸汽单侧冷却凝结进行可视化观测及参数测量,发现随蒸汽雷诺数(Re为1669~5553)的提高,凝结液成膜方式、发展演化和稳定性均与低雷诺数下由液滴、液桥合并形成的稳定液膜有较大差异。液膜不同流动形态,如周期性断裂、局部失稳、小溪流,对换热的影响十分显,进口区域存在的高换热特性正是由于液膜流动方式的不稳定性所致。高蒸汽雷诺数(Re为5553)时,蒸汽流动的脉动性、界面切应力及Marangoni效应是导致液膜断裂的主要原因。  相似文献   

16.
Falling film microreactors, which provide very high specific interfacial area, have become a promising solution to the fast and strongly exothermic/endothermic gas–liquid reaction systems. A computational fluid dynamic simulation of the two-phase flow for a falling film microreactor is presented using the volume of fluid (VOF) model. The hydrodynamic characteristics, from both 2-D and 3-D simulations, including liquid film thickness, velocity, pressure and shear stress profiles, are analyzed. 2-D simulation is adopted for the study of the relationship of liquid flow rate and film thickness, as well as the effects of gas flow rate, surface tension, liquid viscosity and pressure difference on the liquid flow rate. 3-D simulation is necessary to provide the comprehensive flow profiles. Although the system is in the laminar flow regime, the liquid film features a wavy structure and the velocity profiles are complex.  相似文献   

17.
Liquid water flow behavior in the microchannel is of crucial importance to the water management in proton exchange membrane fuel cells (PEMFCs). In this study, the liquid water flow regimes in a single straight microchannel are numerically investigated using the volume of fluid (VOF) method with the dynamic contact angle (DCA). Various air and liquid water inlet flow velocities are considered in the simulation to study their effects on the gas-liquid behaviors and flow structure. It was found that the liquid water injection rate is the dominant factor for the formation of different flow regimes: the increase of water inlet velocity will lead to the transition from squeezing flow to partial-jetting flow and jetting flow. Meanwhile, the air inlet velocity can also significantly affect the flow patterns: the higher inertial air flow will facilitate the detachment of liquid water under the squeezing flow, and greatly accelerate the transition process from liquid water blob to the film under the jetting flow.  相似文献   

18.
The present work aims to provide an explanation to the phenomenon of breakdown of the thin liquid film created by impinging two-phase, liquid–gas jet. Existing in the literature models describe merely the breakdown of single phase liquid films. The model presented here is based on examination of mass and energy equations under the applied criterion of the minimum of total energy. That allows to determine the minimum thickness of isothermal, thin liquid film created by impinging two-phase jet on a solid surface. The mechanical energy of the system consists of kinetic energy of liquid film and surface energy of all physical surfaces consisting for the control surface. An analytical expression for the minimum thickness of such liquid film is derived. The liquid film thickness at the breakdown is a function of the contact angle and shear stresses on the liquid–gas interface. Some comparisons with the experimental data are shown exhibiting a good performance of the postulated model.  相似文献   

19.
A coupled level set and volume-of-fluid method is applied to investigate the double droplet impact on a spherical liquid film. The method focuses on the analysis of surface curvature, droplet diameter, impact velocity, double droplets vertical spacing, the thickness of the liquid film of two liquid droplets after the impact on a spherical liquid film, and the influence of flow and heat transfer characteristics. The results indicate that the average wall heat flux density of the double liquid droplet impact on a spherical liquid film is greater than that of a flat liquid film. Average wall heat transfer coefficient increases with the increase in the liquid film’s spherical curvature. When the liquid film thickness is smaller, the average wall heat flux density of the liquid film is significantly reduced by the secondary droplets generated from the liquid film. When the liquid film thickness is larger, the influence of liquid film thickness on the average wall heat flux density gradually decreases. The average wall heat flux density increases with the increase in impact velocity and the droplet diameter; it also decreases with the increase in double droplets vertical spacing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号