首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2,3-Butanedione monoxime (BDM), 0.5-12.5 mM, inhibited the twitches rapidly and reversibly in the rat diaphragm. A more extensive inhibition at direct than at indirect stimulation, a simultaneous effect on the electromyogram, and an attenuation of the inhibitory effect in preparations made hyperexcitable with Ca(2+)-free solution, myotonia or veratridine, indicated an interference with the gating mechanism of the sarcolemma. The excitation-contraction uncoupling with BDM was additive to the similar effect of dantrolene. A synergistic effect was not found, and neither agent alone nor both in combination caused a complete excitation-contraction uncoupling. Several differences between the effects of BDM and dantrolene were disclosed: Lowering the temperature increased and decreased the effect of BDM and dantrolene, respectively. Tetanic stimulation and high Ca2+ or high K+ antagonized the effect of dantrolene and did not affect the BDM-induced inhibition. Ca(2+)-free solution potentiated the effect of dantrolene and antagonized the effect of BDM. Caffeine and KCl contractures were inhibited by BDM, whereas the propranolol contracture due to Na,K-ATPase inhibition, which is completely inhibited by dantrolene, was unaffected by BDM.  相似文献   

2.
1. The electrical and mechanical responses of the anterior byssal retractor muscle (ABRM) of Mytilus edulis to acetylcholine (ACh), high [K]O or the removal of external Ca were examined under a variety of conditions. 2. ACh (10(-6)--10(-3)M) produced contracture tensions larger than those produced by high [K]O (30-300 mM) for a given amount of depolarization. In Ca-free solution, the rate of decline of ACh-contractures was much smaller than that of K contractures, though both ACh- and K-contractures eventually disappeared. 3. 5-HT (10(-4)M) of procaine (1 mM) markedly reduced the height of ACh-contractures, but had little or no effect on K-contractures. The height of K contractures was markedly decreased by Mn ions (20 mM) or low pH (4-5), while ACh-contractures remained unaffected. 4. Partial replacement of [Na]o by choline (30-100 mM) reduced both ACh-induced depolarization and contracture tension, whereas K-contractures remained unchanged even after total replacement of [Na]o by choline. 5. ACh could produce little or no tension when applied during the relaxation phase of K-contractures, while high [K]o produced the maximal contracture tension when applied during the relaxation phase of ACh-contractures. 6. Following the removal of external Ca from solutions containing less than 10 mM-Mg, the ABRM showed a marked tension development associated with repetitive electrical activity superimposed on a gradual decline of membrane potential. 7. These results suggest that ACh-contractures are mainly due to the release of intracellularly stored Ca, while K-contractures are mainly associated with the inward movement of external Ca.  相似文献   

3.
1. The contractile responses of the inferior rectus, one of the extraocular muscles of the rat, to a depolarization induced by an elevation of the potassium concentration in the external medium ([K]O) have been studied 'in vitro'. 2. The elevation of [K]O to 20 and 30 mM-K produced contractures that consisted of a sustained or tonic tension. When [K]O was increased to 50 mM or more a well-defined transient or phasic tension appeared before the tonic response. The increment of [K]O above 50 mM enhanced the phasic component and depressed the tonic tension. The maximal tonic tension, usually evoked by 50 mM-K, is about 50% of the tetanic tension, shows a gradual decline with time and lasts for hours. Control experiments performed in diaphragm showed that this muscle only responds with phasic tensions. 3. The difference in the repriming of the phasic and tonic responses when tensions were induced with salines containing low or normal [Cl] suggests that the muscle fibres responsible for the tonic tension are poorly permeable to Cl-. 4. The amplitude of the tonic tension was reduced by Ca deprivation and by an elevation of [Ca] in the saline to 10 mM. 5. It is concluded that in rat extraocular muscles, an increase in [K]O activates two types of muscle fibres: singly and multiply innervated. These appear to be functionally equivalent to the twitch and slow fibres of amphibian and avian muscle and would give rise to the phasic and tonic components of the contracture, respectively.  相似文献   

4.
K+ contractures were elicited in small bundles of tonic skeletal muscle fibres of the frog. Adrenaline (1 microM) increased the amplitude of K+ contractures in a [K+]o-dependent manner: maximal effects were produced between 20 and 60 mM [K+]o. In contrast, we found no effect of adrenaline on K+ contractures of twitch fibres. The potentiating effect of adrenaline depended on [Ca2+]o. Increasing [Ca2+]o from 1.8 to 10 mM doubled the positive inotropic effect of adrenaline. In a nominally Ca2+ free saline, adrenaline had no potentiating effect. The Ca2+ channel blockers nifedipine (20 microM) and Ni2+ (1.8 mM) reversibly reduced the amplitude of the tonic phase of K+ contractures and blocked the potentiation by adrenaline. The mechanical effects of adrenaline cannot be explained by changes in the membrane potential, as revealed by intracellular recordings at several [K+]o. It was concluded that the potentiating effect of adrenaline in tonic muscle fibres of the frog may be mediated through Ca2+ channels.  相似文献   

5.
Brain ischemia reperfusion causes increased formation of reactive oxygen species (ROS). Activity of the mitochondrial enzyme pyruvate dehydrogenase (PDH) has been shown to undergo a significant decrease following reperfusion of the ischemic tissue. We have examined the effect of a superoxide radical-generating system (xanthine oxidase/hypoxanthine, XO/HX) on the activity of this enzyme. Incubation of PDH in the presence of XO/HX resulted in its inactivation. The degree of the inactivation was dependent on the amount of XO present, which correlated linearly with the concentration of superoxide radical generated by this system. The activity of lactate dehydrogenase, an enzyme resistant to inactivation by ischemia reperfusion, was not affected by this system. Superoxide dismutase partially prevented and catalase exerted a nearly complete protective effect against the inactivation of PDH. Deferoxamine was partially protective. The sulfhydryl protective reagents, dithiothreitol and glutathione, prevented the inactivation of PDH, even though to varying degrees, which implicates sulfhydryl oxidation. A hydroxyl radical-generating system (hydrogen peroxide irradiated with ultraviolet radiation) effectively inactivated PDH. These results demonstrate that PDH is susceptible to damage and inactivation by ROS and point to the involvement of Fenton chemistry and hydroxyl radicals formed through it in PDH inactivation by XO/HX. A similar mechanism may be responsible for the PDH inactivation during ischemia/reperfusion.  相似文献   

6.
By keeping intracellular Na+ (aiNa) low, the Na,K-pump can prevent Ca2+ overload of cardiomyocytes. We therefore examined whether Ca2+ stimulates Na,K-pump activity in sheep cardiac Purkinje fibers. By removing Ca2+, Mg2+ and K+, the fibers depolarized and aiNa rose to 70 mM. After addition of 6 mM Mg2+ and lowering extracellular Na2+ to 29 mM, 30mM Rb+ was added, and over 10-15 min aiNa recovered to 3-7 mM. Two load-recovery cycles were conducted in 10 fibers. During one of the cycles Ca2+ (0.1-1.0 mM) was added before Rb+, causing a contracture. During recovery aiNa fell faster during Ca2+ contracture than in control cycles. Between 30 and 20 mM the rates were -10.0+/-1.6 and -5.4+/-0.6 mM/min, respectively (P<0.05). In Ca2+-exposed fibers tension fell almost parallel with aiNa. Na, K-pump reactivation caused membrane potential (Vm) to hyperpolarize transiently to -70 mV. Ca2+ did not affect membrane conductance. For a given aiNa during reactivation, Vm was more negative during Ca2+ contracture and depolarized faster (P<0.05). Intracellular pH (pHi) fell from 7.11+/-0.05 to 6.92+/-0.08 (n.s.) during control load-recovery cycles and was 6.83+/-0.14 at the end of the Ca2+ cycles. ATP content of the fibers did not change significantly through two complete load-recovery cycles, but creatine phosphate (CrP) fell by about 40%. By fitting the data to a model incorporating the Hill equation we show that during Ca2+-induced contracture maximum Na,K-pump rate (Vmax) was increased by about 40% and aiNa that causes 50% pump activation (k0.5) was lowered from 21. 2+/-1.6 to 15.5+/-1.4 mM.  相似文献   

7.
ACh-induced vasodilation was investigated in pulmonary arteries from 8 and 2 day pre-term foetal, neonatal (0-12 h and 4 day old) and adult rabbits. The effects of superoxide anion generation [with hypoxanthine (HX, 0.1 mM)/xanthine oxidase (XO, 15 mu ml(-1))], endogenous superoxide dismutase (SOD) inhibition [with the Cu-Zn SOD inhibitor triethylenetetramine (TETA, 1 mM)], endogenous superoxide anion scavenging [by superoxide dismutase (SOD, 50 u ml(-1))] and inhibition of endothelial nitric oxide synthase (eNOS) [with, Nomega-nitro-L-arginine methylester (L-NAME, 0.1 mM)], on basal and ACh-induced NO activity were studied by examining phenylephrine-induced contraction and ACh-induced vasodilation respectively. L-NAME and endothelium removal abolished all ACh-induced vasodilation and 1 microM sodium nitroprusside fully dilated all vessels. ACh-induced vasodilation was absent in the 8 day pre-term foetus and 0-12 h neonate but present at all other ages. L-NAME itself contracted 2 day pre-term foetal vessels. At 0 12 h, SOD, but not the phosphodiesterase 5 inhibitor zaprinast (1 microM), uncovered ACh-induced vasodilation. At this age SOD reduced phenylephrine-induced contraction which was not influenced by TETA, L-NAME or HX/XO, and L-NAME itself did not cause contraction. This suggests both ACh-induced and basal NO activity are compromise in these vessels by endogenous superoxide anion production and deficiencies in endogenous SOD activity. In 4 day vessels, but not adult vessels, L-NAME, TETA and HX/XO augmented contractions to phenylephrine, and L-NAME itself induced vasoconstriction, suggesting that basal NO and SOD activities were present by 4 days but were not evident in the adult. ACh-induced NO activity, and the influence of endogenous SOD on this, were present in the adult (and 4 day) vessels as superoxide generation with HX/XO significantly reduced ACh-induced vasodilation and this effect was inhibited by SOD and augmented by TETA. Increased oxygen tensions > 500 mmHg attenuated ACh-induced vasodilation in the foetal but not neonatal rabbits. Raising the oxygen tension from approximately 20 to approximately 120 mmHg revealed ACh-induced vasodilation in the 8 day pre-term vessels. In summary, superoxide anion accumulation combined with deficiencies in SOD activity may transiently compromise basal and ACh-induced NO activity at birth. Experimental oxygen tensions markedly influence ACh-induced vasodilation in foetal rabbit pulmonary arteries.  相似文献   

8.
Effects of Au3+ on Ag(+)-induced contractures and Ca2+ release channel activity in the sarcoplasmic reticulum were studied in frog skeletal muscles. Single fibres spontaneously produced phasic and tonic contractures upon addition of 5-20 microM Ag+ or more than 50 microM Au3+. Simultaneous application of 5 microM Ag+ and 20 microM Au3+ inhibited contractures induced by Ag+. Au3+ applied immediately after development of Ag(+)-induced contractures shortened the duration of the phasic contracture and markedly decreased the subsequent tonic contracture. Pretreatment of fibres with Au3+ inhibited the Ag(+)-induced phasic contracture. Ca2+ release channels incorporated into planar lipid bilayers were activated in response to Au3+ at 20 to 200 microM. A close relationship was observed between Ca2+ release channel open probability and amplitude of the Au(3+)-induced tonic contracture. Channel activity was inhibited by 5 microM ruthenium red. We conclude that extracellular Au3+ at low concentrations modifies the interaction of Ag+ with voltage sensors in the transverse tubules to inhibit the Ag(+)-induced contracture and, if it enters the cell, Au3+ may directly activate the sarcoplasmic reticulum Ca2+ release channel to partially contribute to the tonic contracture.  相似文献   

9.
Formation of oxygen-derived free radicals and activation of the glutathione (GSH) redox cycle has been associated with impaired rat diaphragm performance. Diethylmaleate (DEM) given intraperitoneally irreversibly conjugates with GSH, resulting in marked decreases in tissue concentrations of GSH. We have investigated the effects of acute GSH depletion by DEM on diaphragmatic function during resistive breathing (RB) in the rat. The experimental groups were 1) control, 2) DEM alone, 3) RB, and 4) DEM with RB (DEM + RB). RB was obtained by inspiratory RB until the rats were unable to sustain 70% of maximum airway opening pressure. A portion of the diaphragm was frozen for biochemical assays, and the rest of the diaphragm was prepared for measurement of in vitro contractile properties, including maximum tetanic tension, twitch tension, force-frequency curves, and contraction times. DEM treatment produced a profound depletion of GSH in the DEM and DEM + RB groups. Neither DEM nor RB alone significantly altered diaphragm contractile properties. In DEM + RB rats, however, there was a significant decrease in maximum tetanic tension, twitch tension, and tetanic tension. These data reveal that DEM produced an acute depletion of GSH in the diaphragm without impairment of the muscle in nonstressed rats. In the presence of DEM-induced GSH depletion, RB did result in marked diaphragm impairment. The depletion of GSH and the subsequent impairment in diaphragm contractility after RB suggest that GSH may play an important role in protecting the diaphragm against oxidative stress associated with RB.  相似文献   

10.
We have previously demonstrated the generation of reactive oxygen species (ROS) in cultured bovine pulmonary artery endothelial cells (BPAECs) and in isolated perfused rat lungs exposed to high K+ and during global lung ischemia. The present study evaluates the NADPH oxidase pathway as a source of ROS in these models. ROS production, detected by oxidation of the fluorophore, dichlorodihydrofluorescein, increased 2.5-fold in BPAECs and 6-fold in rat or mouse lungs exposed to high (24 mmol/L) K+. ROS generation was markedly inhibited by diphenyliodonium, a flavoprotein inhibitor, and by the synthetic peptide PR-39, an inhibitor of NADPH oxidase assembly, whereas allopurinol had no effect. With ischemia (1 hour), ROS generation by rat and mouse lungs increased 7-fold; PR-39 showed concentration-dependent inhibition of ROS production, with 50% inhibition at 3 micromol/L PR-39. ROS production in lungs exposed to high K+ or ischemia was essentially abolished in mice with a "knockout" of gp91(phox), a membrane-localized cytochrome component of NADPH oxidase; increased ROS production by these lungs after anoxia/reoxygenation was similar to control. PR-39 also inhibited ischemia and the high K+-mediated increase in lung thiobarbituric acid reactive substance. Western blotting of BPAECs and immunocytochemistry of BPAECs and rat and mouse lungs showed the presence of p47phox, a cytoplasmic component of NADPH oxidase and the putative target for PR-39 inhibition. In situ fluorescence imaging in the intact lung demonstrated that the increased dichlorofluorescein fluorescence in these models of ROS generation was localized primarily to the pulmonary endothelium. These studies demonstrate that ROS production in lungs exposed to ischemia or high K+ results from assembly and activation of a membrane-associated NAPDH oxidase of the pulmonary endothelium.  相似文献   

11.
Although the involvement of free radicals in the development of endothelial dysfunction under pathological conditions, like diabetes and hypercholesterolemia, has been proposed frequently, there is limited knowledge as to how superoxide anions (O2-) might affect endothelial signal transduction. In this study, we investigated the effects of preincubation with the O2(-)-generating system xanthine oxidase/hypoxanthine (XO/HX) on mechanisms for Ca2+ signaling in cultured porcine aortic endothelial cells. Incubation of cells with XO/HX yielded increased intracellular Ca2+ release and capacitative Ca2+ entry in response to bradykinin and ATP in a time- and concentration-dependent manner. This effect was prevented by superoxide dismutase but not by the tyrosine kinase inhibitor tyrphostin A48. In addition, capacitative Ca2+ entry induced by the receptor-independent stimulus 2,5-di-(tert-butyl)-1,4-benzohydroquinone or thapsigargin was enhanced in O2(-)-exposed cells (+38% and +32%, respectively). Increased Ca2+ release in response to bradykinin in XO/HX-pretreated cells might be due to enhanced formation of inositol-1,4,5-trisphosphate (+140%). Exposure to XO/HX also affected other signal transduction mechanisms involved in endothelial Ca2+ signaling, such as microsomal cytochrome P450 epoxygenase and membrane hyperpolarization to Ca2+ store depletion with thapsigargin (+103% and +48%, respectively) and tyrosine kinase activity (+97%). A comparison of bradykinin-initiated intracellular Ca2+ release and thapsigargin-induced hyperpolarization with membrane viscosity modulated by XO/HX (decrease in viscosity) or cholesterol (increase in viscosity) reflected a negative correlation between bradykinin-initiated Ca2+ release and membrane viscosity. Because intracellular Ca2+ is a main regulator of endothelial vascular function, our data suggest that O2- anions are involved in regulation of the vascular endothelium.  相似文献   

12.
Oxygen free radical generation by xanthine oxidase (XO) is a possible mechanism in the injury following reperfusion of transplanted organs. This study was undertaken to investigate XO in human lung, and to investigate whether XO is released into the blood stream during the immediate postoperative period after lung transplantation. XO activity was measured in healthy human lung tissue, and XO protein and the adenine nucleotide catabolic products hypoxanthine, xanthine and uric acid were analysed in the plasma samples collected during human heart-lung transplantation (n=4), double lung transplantation (n=2), and single lung transplantation (n=1). Neutrophil degranulation was assessed by plasma lactoferrin measurements. The results indicated that XO activity (detection limit 5 pmol x min(-1) x mg(-1) protein) and protein (detection limit 5 ng x mg-1 protein) were undetectable in the lungs of five healthy individuals. Similarly, no XO protein could be found in the plasma samples from the right ventricle or left atrium during and after the transplantation in any of the cases. Plasma xanthine and hypoxanthine concentrations were elevated 2-10 fold immediately after the reperfusion of the transplant, indicating washout of high-energy phosphate degradation products from the ischaemic lung. Plasma uric acid decreased rather than increased immediately after the surgery and during the following 24 h. Lactoferrin was elevated during the surgery. In conclusion, these results show that XO activity in human lung is low, it is not released into the blood stream during human heart-lung transplantation, and it is unlikely to contribute to postoperative complications in these patients.  相似文献   

13.
We have previously shown that antioxidant enzymes (superoxide dismutase and catalase) depress contractility of unfatigued diaphragm fiber bundles and inhibit development of acute fatigue. In the present study, we tested for similar effects of N-acetyl-cysteine (NAC), a nonspecific antioxidant approved for clinical use. Diaphragms were excised from deeply anesthetized rats. Fiber bundles were removed, mounted isometrically at 37 degrees C, and stimulated directly using supramaximal current intensity. Studies of unfatigued muscle showed that 10 mM NAC reduced peak twitch stress (P < 0.0001), shortened time to peak twitch stress (P < 0.002), and shifted the stress-frequency curve down and to the right (P < 0.05). Fiber bundles incubated in 0.1-10 mM NAC exhibited a dose-dependent decrease in relative stresses developed during 30-Hz contraction (P < 0.0001) with no change in maximal tetanic (200 Hz) stress. NAC (10 mM) also inhibited acute fatigue. Throughout 10 min of intermittent contraction at 30-40 Hz, treated bundles developed higher stresses than time-matched control bundles (P < 0.0001). NAC concentrations > or = 30 mM were toxic, causing a prompt irreversible decrease in maximal tetanic stress (P < 0.0001). Because NAC effects mimic the effects of other antioxidant agents with different mechanisms of action, we conclude that exogenous antioxidants exert stereotypical effects on contractile function that differ between unfatigued and fatiguing muscle. Unlike antioxidant enzymes, however, NAC has been approved for clinical use and may be used in future studies of human muscle fatigue.  相似文献   

14.
STUDY OBJECTIVES: To study the in vitro effects of the serotonin2 (5-HT2) receptor agonist 1-(2.5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) in skeletal muscle specimens from malignant hyperthermia-susceptible (MHS) and normal (MHN) patients following pretreatment with the 5-HT2 receptor antagonist ritanserin. DESIGN: Prospective study. SETTING: Malignant hyperthermia (MH) laboratory at a university hospital. PATIENTS: 41 patients undergoing in vitro contracture test for diagnosis of MH susceptibility. INTERVENTIONS: Skeletal muscle biopsies in adult patients were performed with a 3-in-1 nerve block with 40 ml prilocaine 1%. In children, general anesthesia was induced with 50 micrograms/kg alfentanil intravenously (i.v.) and 2 to 2.5 micrograms/kg propofol i.v. and maintained with a continuous infusion of propofol (< or = 150 micrograms/kg/min) and nitrous oxide (66%) in oxygen. MEASUREMENTS AND MAIN RESULTS: Patients were first classified as MHS or MHN by the in vitro contracture test according to the European MH protocol. Surplus muscle specimens of 21 MHS and 20 MHN patients were used in this study. At first, DOI was added to the organ bath at a concentration of 0.02 mM. In the second part of the study, muscle specimens were preincubated with ritanserin 0.01 mM for 10 minutes before DOI 0.02 mM was added to the bath. Muscle specimens from all patients developed contractures after administration of DOI. The onset of contractures was significantly faster in MHS muscles, and the magnitude of contracture was significantly greater than in MHN. The muscle twitch decreased significantly in both groups after DOI. After pretreatment with ritanserin, start of contracture was significantly delayed in MHS muscles. MHN muscles failed to develop contractures. The maximum level of contracture was significantly reduced in MHS. Muscle twitch decreased also in both MHS and MHN groups. CONCLUSIONS: The findings may indicate that stimulation of 5-HT2 receptors is involved in MH induction. Furthermore, 5-HT2 receptor antagonists could possibly be effective in preventing MH. Additional studies are required to determine if administration of 5-HT2 receptor antagonists could be of additional value in the treatment or prevention of anesthetic-induced MH.  相似文献   

15.
Effects of membrane potential, intracellular Ca2+ and adenine nucleotides on glucose-sensitive channels from X organ (XO) neurons of the crayfish were studied in excised inside-out patches. Glucose- sensitive channels were selective to K+ ions; the unitary conductance was 112 pS in symmetrical K+, and the K+ permeability (PK) was 1.3 x 10(-13) cm x s(-1). An inward rectification was observed when intracellular K+ was reduced. Using a quasi-physiological K+ gradient, a non-linear K+ current/voltage relationship was found showing an outward rectification and a slope conductance of 51 pS. The open-state probability (Po) increased with membrane depolarization as a result of an enhancement of the mean open time and a shortening of the longer period of closures. In quasi-physio- logical K+ concentrations, the channel was activated from a threshold of about -60 mV, and the activation midpoint was -2 mV. Po decreased noticeably at 50 microM internal adenosine 5'-triphosphate (ATP), and single-channel activity was totally abolished at 1 mM ATP. Hill analysis shows that this inhibition was the result of simultaneous binding of two ATP molecules to the channel, and the half-blocking concentration of ATP was 174 microM. Internal application of 5'-adenylylimidodiphosphate (AMP-PNP) as well as glibenclamide also decreased Po. By contrast, the application of internal ADP (0.1 to 2 mM) activated this channel. An optimal range of internal free Ca2+ ions (0.1 to 10 microM) was required for the activation of this channel. The glucose--sensitive K+ channel of XO neurons could be considered as a subtype of ATP-sensitive K+ channel, contributing substantially to macroscopic outward current.  相似文献   

16.
Cytosolic and mitochondrial alterations induced by exposure of rat astroglial primary cultures to reactive oxygen species (ROS) generated by a xanthine/xanthine oxidase (X/XO) mixture or by lipopolysaccharide (LPS) have been investigated biochemically and immunochemically. In the presence of ROS generated by X/XO, a significant decrease in Cu,Zn superoxide dismutase (Cu,Zn-SOD) and in glutamine synthetase (GS) activity was observed whereas mitochondrial Mn-SOD activity and enzyme protein levels were significantly enhanced. Similar effects on GS, Cu,Zn- and Mn-SOD activities were observed by glucose/glucose oxidase treatment of the cells. Addition of LPS to the cell growth medium also specifically induces Mn-SOD synthesis but was without effect on Cu,Zn-SOD. It is suggested that in all these tested situations, hydrogen peroxide could represent a specific inducer of the observed phenomenon and it may therefore be considered as an intracellular messenger involved in the regulation of some aspects of astroglial oxidative metabolism, particularly the defence against ROS.  相似文献   

17.
High-frequency fatigue (HFF), the decline of force during continuous tetanic stimulation (lasting 4-40 s), was studied in isolated bundles of rat skeletal muscle fibers. HFF was slower in slow-twitch soleus fibers than in fast-twitch red or white sternomastoid fibers; denervation accelerated fatigue in soleus. Maximal 200-mmol/L potassium contractures of normal amplitude were induced in fatigued fibers, suggesting that crossbridge cycling and the voltage activation of excitation-contraction coupling could still occur maximally, but that activation by action potentials was impaired. An increase in [Na+]o slowed HFF, while a small increase in [K+]o or reduction in [Cl(-)]o accelerated HFF. Increasing the tetanic stimulation frequency exacerbated fatigue. Recovery from HFF proceeded rapidly since force increased markedly within a few seconds when stimulation ceased. These results support the hypothesis that a redistribution of Na+, K+, and Cl- across the transverse tubular membranes during repeated action potential activity induces fatigue by reducing the amplitude and conduction of action potentials.  相似文献   

18.
We studied the effects of oxygen free radicals on the ATP-sensitive potassium channel (KATP channel) of guinea-pig ventricular myocytes. Single KATP channel currents were recorded from inside-out patches in the presence of symmetrical K+ concentrations (140 mM in both bath and pipette solutions). Reaction of xanthine oxidase (0.1 U/ml) on hypoxanthine (0.5 mM) produced superoxide anions (.O2-) and hydrogen peroxide (H2O2). Exposure of the patch membrane to.O2- and H2O2 increased the opening of KATP channels, but this activation was prevented by adding 1 microM glibenclamide to the bath solution. In the presence of ferric iron (Fe3+: 0.1 mM), the same procedure produced hydroxyl radicals (.OH) via the iron-catalysed Haber-Weiss reaction.OH also activated KATP channels; however, this activation could not be prevented by, even very high concentrations of glibenclamide (10 microM). These different effects of glibenclamide suggest that the mode of action of these oxygen free radicals on KATP channels is different and that.OH is more potent than.O2-/H2O2 in activating KATP channels in the heart.  相似文献   

19.
The inhibition of the activity of bovine xanthine oxidase (XO) by divalent mercury and other metal ions has been investigated by optical spectroscopy and stop-flow kinetic measurements. The study shows that Hg2+ ion completely inhibits the activity of XO, while other metal ions such as Zn2+, Mg2+, Co2+, and Ni2+ inhibit the activity only marginally (approximately 10%). The inhibition by the Hg2+ ion was found to be monophasic and noncompetitive with strong affinity for binding to XO. The pH-dependent study of the inhibition indicates that at least two ionizing groups of XO are involved in the binding of the Hg2+ ion.  相似文献   

20.
Flupirtine (KATADOLON), known as a nonopiate centrally acting analgesic drug, was tested as to its potential to prevent apoptosis of human endothelial cells induced by reactive oxygen species (ROS). It was found that Flupirtine displayed no effect on viability and cell proliferation of human umbilical vein endothelial cells (HUVEC) up to a concentration of 10 microg/mL. Apoptosis, induced by ROS and generated by hypoxanthine/xanthine oxidase (EC 1.1.3.22) (HX/XOD) or t-butyl hydroperoxide, was reduced after preincubation with Flupirtine for 3 hr by 35% and 41%, respectively. The maximal cytoprotective effect against apoptosis was observed at a drug concentration of 1 to 3 microg/mL. Flow cytometric studies revealed that Flupirtine was able to decrease the number of necrotic cells as well as of apoptotic cells. Neither the simultaneous administration of Flupirtine with the apoptosis-inducing agent nor the preincubation of HUVEC with Flupirtine influenced the increase in the intracellular Ca2+ concentration [Ca2+]i caused by the production of ROS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号