首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
基于构形理论,采用解析解法,以最大温差最小为优化目标,对基于环形高导热通道和圆柱形单元体的三维“体-点”导热模型进行构形优化,得到无量纲最大热阻最小的三维圆柱体最优构形.结果表明:增大高、低导热材料导热系数比、高导热材料占比和单元体数目均有助于提高圆柱形构造体的导热性能,但当单元体数目较大时,圆柱形构造体的导热性能改善...  相似文献   

2.
基于构形理论,以导热过程中的熵产生最小为优化目标,对“体-点”导热问题进行了研究。得到了矩形单元面和各级构造面的最优外形及高导热材料的最优分布;分析了优化级数对最小化熵产生的影响;比较了所得的最小熵产生与热阻优化过程中熵产生的大小;还比较了以熵产生最小为优化目标与热阻最小为优化目标所得的最优构形的差异。  相似文献   

3.
本文基于最小火积耗散热阻原理,在考虑相变材料导热热阻以及非稳态传热过程的基础上,对多级套管式相变蓄热系统的融化温度进行了数值优化,获得了最优融化温度分布。在此基础上,研究了相变材料导热系数和传热管长度对最优融化温度、火积耗散热阻和平均蓄热速率的影响。研究结果表明,与现有理论优化方法相比,本文提出的数值优化方法具有更好的适用性;优化后多级套管式相变蓄热系统可有效提高相变蓄热系统的平均蓄热速率,降低火积耗散热阻;随着相变材料导热系数增大和传热管长度增加,多级套管式相变蓄热系统最优融化温度的温差愈加明显,其强化传热性能呈上升趋势。  相似文献   

4.
根据构形理论,首先以三角形单元体为研究对象并释放角度约束,对给定区域进行以总运输费用最小为目标的经济学分析;在此基础上,将三角形单元体组装成新的矩形构形体,进行同样的经济学分析;持续类似工作,得到了完整的解析解。将本文优化结果与相关文献进行比较表明,用三角形单元体对所给区域进行经济学优化,运输费用将会更低,而当各运输通道不再互相垂直,继续对其夹角进行优化时,运输费用有进一步的下降。采用三角形单元体进行经济学优化,并释放角度约束,能得到更低的运输费用。  相似文献   

5.
基于最小■耗散热阻原理,在考虑相变材料导热热阻以及非稳态传热过程的基础上,对多级套管式相变蓄热系统的融化温度进行了数值优化,获得了最优融化温度分布。在此基础上,研究了相变材料导热系数和传热管长度对最优融化温度、■耗散热阻和平均蓄热速率的影响。研究结果表明:与现有理论优化方法相比,提出的数值优化方法具有更好的适用性;优化后多级套管式相变蓄热系统可有效提高相变蓄热系统的平均蓄热速率,降低■耗散热阻;随着相变材料导热系数增大和传热管长度增加,多级套管式相变蓄热系统最优融化温度的温差愈加明显,其强化传热性能呈上升趋势。  相似文献   

6.
为了比较平面螺旋折流板换热器和折面螺旋折流板换热器的传热和阻力性能,应用了换热器常用评价标准PEC准则和火积理论对两种换热器实验结果进行了分析,同时采用火积耗散极值原理对两种换热器的传热火积耗散率、阻力火积耗散率以及总火积耗散率进行了对比。结果表明:火积耗散理论分析换热器性能的结果与传统换热器评价标准PEC准则相符,说明了火积耗散理论的可靠性;折面螺旋折流板换热器的综合性能得到了有效的改进,火积耗散率也均优于原始结构,表明折面螺旋折流板换热器的性能得到较大改善;两种换热器传热火积耗散率值要远远大于阻力火积耗散率,约为阻力火积耗散率的一千余倍,说明传热损失为换热器的主要不可逆损失。  相似文献   

7.
在自然对流条件下,基于构形理论和理论,建立了导热基座上椭圆柱离散热源的散热模型,分别在给定热源热导率总和与热源总发热强度的约束条件下,以热导率分布与热源强度分布为设计变量,以系统最高温度和基于耗散的当量热阻为性能指标,进行构形设计,得到了对应的热源散热最优构形,可为实际发热器件的热设计和热管理提供理论支撑。  相似文献   

8.
张明智  耿士敏 《汽轮机技术》2013,55(1):25-26,78
基于描述热量传递能力的物理量——火积,定义了评价换热器传热性能的火积耗散原理.同时,推出了换热器火积耗散的公式,并且通过代人数据计算,得出了火电厂各级加热器的火积耗散,并进行分析,对优化换热器的性能有一定的指导作用.  相似文献   

9.
高渗透率的间歇性分布式电源(DG)使微网在并网或孤岛模式的运行可靠性降低,而传统的无功优化方法往往因忽略微网可靠性导致优化效果较差。依据有功及无功功率充足和电压极限限制,以概率方式来评估微网的可靠性,提出了一种微网在并网及孤岛模式下的无功优化规划模型,以系统年电能损耗最小和微网可靠性最大为目标进行求解。最后,采用PGE 69节点进行算例分析,研究了优化系数的作用效果和算法的鲁棒性,并通过成本-效益分析来确定系统的电容器组的最优容量。结果表明,对微网进行分布式无功电源的优化配置能有效改善网损,并提高系统的可靠性。  相似文献   

10.
李大中  唐影 《可再生能源》2015,33(1):118-123
提出了一种融入灰色关联度分析的最小二乘支持向量机建模方法,建立了垃圾焚烧发电污染物排放过程模型。验证结果表明,模型预测值与实际值的最大相对误差为7.8%,模型拟合平均绝对百分误差最大为4.67%,外推平均绝对百分误差最大为3.98%,模型能够较好地模拟垃圾焚烧过程中污染物排放过程特性。在此基础上,拟合设计了垃圾焚烧过程排放烟气污染物多目标优化函数,以二噁英排放值为主要评价指标,从Pareto最优解集合中选取出二噁英排放值较低的最优解子集。结果表明,优化计算值明显低于实际值,验证了设计方法的可行性和有效性。  相似文献   

11.
The constructal “tree-like” network has been proved an effective way for “volume-point” heat conduction. This paper aims to further improve the constructal “tree-like” network with the optimization objectives of minimizations of maximum thermal resistance and entransy dissipation rate respectively. By removing the constraint that the last-order construct must be optimal, and using variable cross-section conducting path, the maximum thermal resistance and entransy dissipation rate can be greatly reduced. It is also found that the optimal construct for minimum peak temperature is similar to the optimal one for minimum entransy dissipation rate. They hold the same shape and configuration, and the main difference of them is the shape of high-conductivity path.  相似文献   

12.
Disc cooling problem is optimized by taking entransy dissipation rate minimization as optimization objective. The non-dimensional mean temperature difference of the disc cooling model with radial high conducting fins inserted is deduced. The effects of the fin geometry, the fin aspect ratio, the ratio between the high conductivity and low conductivity, the relative amount of high conductivity material and the number of high conducting fins on the entransy dissipation rate of disc cooling are analyzed. The optimization results show that the high conducting fin should be extended to the centre of circle as the heat transfer effect of the high conducting fins is improved, and there exists an optimal fin aspect ratio corresponding to minimum entransy dissipation rate for different high conducting effects of the fin, and the number of high conducting fins has a slight effect on the entransy dissipation rate. Comparison with those for maximum temperature difference minimization shows that the constructs based on entransy dissipation rate minimization are different from those based on maximum temperature difference minimization, but the optimal constructal shape changing potentials of the number of fins and the relative amount of high conductivity material are similar.  相似文献   

13.
Fang Yuan  Qun Chen 《Energy》2011,36(9):5476-5485
Improving heat transfer performance is very beneficial to energy conservation because heat transfer processes widely existed in energy utilization systems. In this contribution, in order to effectively optimize convective heat transfer, such two principles as the field synergy principle and the entransy dissipation extremum principle are investigated to reveal the physical nature of the entransy dissipation and its intrinsic relationship with the field synergy degree. We first established the variational relations of the entransy dissipation and the field synergy degree with the heat transfer performance, and then derived the optimization equation of the field synergy principle and made comparison with that of the entransy dissipation extremum principle. Finally the theoretical analysis is then validated by the optimization results in both a fin-and-flat tube heat exchanger and a foursquare cavity. The results show that, for prescribed temperature boundary conditions, the above two optimization principles both aim at maximizing the total heat flow rate and their optimization equations can effectively obtain the best flow pattern. However, for given heat flux boundary conditions, only the optimization equation based on the entransy dissipation extremum principle intends to minimize the heat transfer temperature difference and could get the optimal velocity and temperature fields.  相似文献   

14.
A crossflow heat exchanger (CFHEx) is designed and fabricated in a workshop. For designing this heat exchanger (HEx), the number of passes, frontal areas, HEx volumes, heat transfer areas, free-flow areas, ratios of minimum free-flow area to frontal area, densities, mass flow rates of flowing fluids, maximum/minimum heat capacities, heat capacity ratio, outlet temperatures of hot/cold fluids, average temperatures, mass velocities, Reynolds numbers, and convective heat transfer coefficients are evaluated by considering Colburn/friction factors. After fabrication of the HEx, effectiveness, exergy destruction, entransy dissipation, entransy dissipation-based thermal resistance, entransy dissipation number, and entransy effectiveness for hot/cold fluids sides are found at different flow rates and inlet temperatures of fluids. By experimental results, optimum operating conditions are found, which gives maximum effectiveness and entransy effectiveness but minimum rates of exergy destruction, entransy dissipation, entransy dissipation-based thermal resistance, and entransy dissipation number for the fabricated CFHEx. This study is concluded as follows: minimum exergy destruction and entransy dissipation rates (ie, 3.061 kJ/s·K and 1125.44 kJ·K/s, respectively) are found during experiment 2. Maximum entransy effectiveness of hot/cold fluids (ie, 0.689/0.21) is achieved in experiment 1. Moderate values of entransy dissipation number (ie, 4.689), entransy dissipation-based thermal resistance (ie, 0.04 s·K/J), exergy destruction (ie, 3.845 kJ/s·K), and entransy dissipation (ie, 1374.04 kJ·K/s) rates are found during experiment 1. Maximum effectiveness (ie, 0.4) for the fabricated HEx is also obtained through experiment 1. After comparative analyses, it is found that experiment 1 provides optimum results, which shows the best performance of the fabricated HEx.  相似文献   

15.
Entransy is a new concept developed in recent years to measure the transport ability of heat at a temperature in conduction and convection. This paper develops the concept of entransy flux for thermal radiation in enclosures with opaque surfaces. The entransy balance equation and entransy dissipation function are derived. The minimum principle of radiative entransy loss is developed. The potentials and the heat fluxes distribution which meet the Stefan–Boltzmann’s law and the energy balance equation would make the radiative entransy loss minimum if the net heat flux of each surface or the thermal potentials of the surfaces are given. The extremum entransy dissipation principles (EEDP) for thermal radiation are developed. The minimum radiative entransy dissipation leads to the minimum average radiative thermal potential difference for prescribed total heat exchange and the maximum radiative entransy dissipation leads to the maximum heat exchange for prescribed average radiative thermal potential difference. The minimum and maximum principle can be concluded into the minimum thermal resistance principle (MTRP) for thermal radiation by defining the thermal resistance with the entransy dissipation. The EEDP or MTRP is proved to be reliable when they are used to optimize some radiative heat transfer problems, and a comparison is made between the minimum principle of entropy generation and the EEDP.  相似文献   

16.
建立了新型板式省煤器的传热模型,计算了新型板式省煤器的火积耗散热阻以及空气侧压降,分析了新型板式省煤器结构参数及空气流速变化时,火积耗散热阻及空气侧压降的变化情况。研究结果表明:增大长轴可以减小火积耗散热阻,有利于提高板式省煤器的传热性能,并且空气侧压降变化幅度不大;增大短轴可以减小火积耗散热阻,有利于提高板式省煤器的传热性能,但空气侧压降增大;减小板束间距可以减小火积耗散热阻,有利于提高板式省煤器的传热性能,但空气侧压降增大,尤其是在板束间距小于20 mm时,继续减小板束间距会造成空气侧压降急剧增大;增大空气进口流速可以减小火积耗散热阻,有利于提高板式省煤器的传热性能,但空气侧压降增大,对换热器的磨损也会增加。  相似文献   

17.
Using the analogy between heat and mass transfer processes, the recently developed entransy theory is extended in this paper to tackle the coupled heat and mass transfer processes so as to analyze and optimize the performance of evaporative cooling systems. We first introduce a few new concepts including the moisture entransy, moisture entransy dissipation, and the thermal resistance in terms of the moisture entransy dissipation. Thereinafter, the moisture entransy is employed to describe the endothermic ability of a moist air. The moisture entransy dissipation on the other hand is used to measure the loss of the endothermic ability, i.e. the irreversibility, in the coupled heat and mass transfer processes – this total loss is shown to consist of three parts: (1) the sensible heat entransy dissipation, (2) the latent heat entransy dissipation, and (3) the entransy dissipation induced by a temperature potential. Finally the new thermal resistance, defined as the moisture entransy dissipation rate divided by the squared refrigerating effect output rate, is recommended as an index to effectively reflect the performance of the evaporative cooling system. In the end, two typical evaporative cooling processes are analyzed to illustrate the applications of the proposed concepts.  相似文献   

18.
The concept of entransy has been newly proposed in terms of the analogy between heat and electrical conduction and could be useful in analyzing and optimizing the heat-work conversion systems.This work presents comparative analyses of entransy and exergy for optimizations of heat-work conversion.The work production and heat transfer processes in Carnot cycle system are investigated with the formulations of exergy destruction,entransy loss,work entransy,entransy dissipation,and efficiencies for both cases of dumping and non-dumping of used source fluid.The effects of source and condensation temperatures on the system performance are systematically investigated for optimal condition of producing maximum work or work entransy.  相似文献   

19.
Qun Chen  Ning Pan  Zeng-Yuan Guo 《Energy》2011,36(5):2890-2898
After introducing the concepts of moisture entransy, moisture entransy dissipation and thermal resistance based on moisture entransy dissipation (TRMED) in part I of this study, we further analyze several direct/indirect evaporative cooling processes based on the above concepts in this part. The nature of moisture entransy, moisture entransy dissipation and TRMED during evaporative cooling processes was reexamined. The results demonstrate that it is the moisture entransy, not the enthalpy, that represents the endothermic ability of a moist air, and reducing the entransy dissipation by both enlarging the thermal conductance of heat and mass transfer, and decreasing the temperature potential of the moist air, i.e. the difference between the dry-bulb temperature of moist air over its dew-point temperature, will result in a smaller system TRMED, and consequently a better evaporative cooling performance. Then, a minimum thermal resistance law for optimizing evaporative cooling systems is developed. For given mass flow rates of both moist air and water, with prescribed moist air and water conditions, minimizing the TRMED will actually lead to the most efficient evaporative cooling performance. Finally, the thermal conductance allocation for an indirect evaporative cooling system is optimized to illustrate the application of the proposed minimum thermal resistance law.  相似文献   

20.
T-shaped assembly of fins is optimized by adopting an analytical method and taking the minimum mean thermal resistance in terms of entransy as optimization objective. The optimal construct of T-shaped assembly is obtained and compared with the optimal construct with maximum temperature difference minimization. The results show that for the two optimization objectives the thicknesses of the optimized fins are almost equal, but the lengths are different obviously: the former length of the elemental fin is almost half the value of the latter length, and the former length of the first-order fin is almost twice as large as the latter length. Compared with the latter optimal construct, the dimensionless mean thermal resistance corresponding to the former optimal construct decreases by 16.4%, and the corresponding dimensionless maximum thermal resistance increases by 9.74%. Both the minimizations of the EDR and the maximum temperature difference (MTD) should be combined to consider the efficiency and the temperature limitation simultaneously for designing the fins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号