首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reports a closed-form analytical drain current model considering energy transport and self-heating for short-channel fully-depleted (FD) SOI NMOS devices with lightly-doped drain (LDD) structure. As verified by the two-dimensional (2-D) simulation results, the analytical drain current model considering energy transport and self-heating provides an accurate prediction of the drain current behavior of the 0.25-/spl mu/m FD SOI NMOS device with and without an LDD structure. From the analytical model, with the LDD structure, the device has a smaller effective electron mobility at a low drain voltage, where lattice temperature is dominant, and a higher effective mobility at a high drain voltage, where electron temperature dominates, as compared to the non-LDD device.  相似文献   

2.
A physical thermal noise model for SOI MOSFET   总被引:1,自引:0,他引:1  
The recent progress in SOI technology necessitates an accurate thermal noise model for wide-band SOI analog IC design. In this paper a physical-based thermal noise model is proposed for floating-body SOI MOSFET operated in strong inversion regime and verified by the experimental data. In the model, both the lattice temperature (unique to SOI due to the buried oxide) and the carrier temperature (significant for short-channel device in saturation region) are considered. The model agrees well with the experimental data  相似文献   

3.
An off-state leakage current unique for short-channel SOI MOSFETs is reported. This off-state leakage is the amplification of gate-induced-drain-leakage current by the lateral bipolar transistor in an SOI device due to the floating body. The leakage current can be enhanced by as much as 100 times for 1/4 μm SOI devices. This can pose severe constraints in future 0.1 μm SOI device design. A novel technique was developed based on this mechanism to measure the lateral bipolar transistor current gain β of SOI devices without using a body contact  相似文献   

4.
This paper reports a compact analytical current conduction model for short-channel accumulation-mode SOI PMOS devices. Based on the study, the current conduction mechanism in a short-channel accumulation-mode SOI PMOS device is different from that in a long-channel one. As verified by the experimental data, the compact analytical model considering channel length modulation and prepinchoff velocity saturation gives an accurate prediction of the drain current characteristics  相似文献   

5.
A generalised three-interface compact capacitive threshold voltage model for horizontal silicon-on-insulator/silicon-on-nothing (SOI/SON) MOSFET has been developed. The model includes different threshold voltage-modifying short-channel phenomena like fringing field, junction-induced 2D-effects, etc. Based on the threshold voltage model, an analytical current voltage model is formulated from the basic charge control analysis of MOSFET. In order to provide a better explanation to various observations and applicable to short-channel SOI and SON structures, the present current voltage model includes the effect of carrier velocity saturation and channel length modulation. Identical structures for both the devices, SOI and SON, are considered but for SON MOSFET, the buried oxide layer is replaced by air. The performance of the two devices are studied and compared in terms of threshold voltage roll-off, subthreshold slope, drain current and drain conductance. The SON MOSFET technology is found to offer devices with further scalability and enhanced performance in terms of threshold voltage roll-off, sub-threshold slope and greater current derivability, thereby providing scope for further miniaturisation of devices and much better performance improvement.  相似文献   

6.
An SOI voltage-controlled bipolar-MOS device   总被引:1,自引:0,他引:1  
This paper describes a new operation mode of the SOI MOSFET. Connecting the floating substrate to the gate in a short-channel SOI MOSFET allows lateral bipolar current to be added to the MOS channel current and thereby enhances the current drive capability of the device. Part of the bipolar current emitted by the source terminal merges into the channel before reaching the drain, which renders the base width substantially shorter than the gate length. This novel operating mode of a short-channel SOI transistor is particularly attractive for high-speed operation, since the device is capable of both reduced voltage swing operation and high current drive, n-p-n and p-n-p devices, as well as complementary inverters have been successfully fabricated.  相似文献   

7.
Short-channel effects in SOI MOSFETs   总被引:4,自引:0,他引:4  
Short-channel effects in thin-film silicon-on-insulator (SOI) MOSFETs are shown to be unique because of dependences on film thickness and body and back-gate (substrate) biases. These dependences enable control of threshold-voltage reduction, channel-charge enhancement due to a drain bias, carrier velocity saturation, channel-length modulation and its effect on output conductance, as well as device degradation due to hot carriers in short-channel SOI MOSFETs. A short-channel effect exclusive to SOI MOSFETs, back-surface charge modulation, is described. Because of the short-channel effects, the use of SOI MOSFETs in VLSI circuits provides the designer with additional flexibility as compared to bulk-MOSFET design. Various design tradeoffs are discussed  相似文献   

8.
This letter provides an assessment of single-electron effects in ultrashort multiple-gate silicon-on-insulator (SOI) MOSFETs with 1.6-nm gate oxide. Coulomb blockade oscillations have been observed at room temperature for gate bias as low as 0.2 V. The charging energy, which is about 17 meV for devices with 30-nm gate length, may be modulated by the gate geometry. The multiple-gate SOI MOSFET, with its main advantage in the suppression of short-channel effects for CMOS scaling, presents a very promising scheme to build room-temperature single-electron transistors with standard silicon nanoelectronics process.  相似文献   

9.
Two-dimensional analytic modeling of very thin SOI MOSFETs   总被引:1,自引:0,他引:1  
An analytic solution of the Poisson's equation for MOSFETs on very thin SOI (silicon on insulator) was developed using an infinite series method. The calculation region includes the thin SOI and the gate and buried oxides. The results of this model were found to agree well with a two-dimensional (PISCES) simulation in the subthreshold region and the linear region with small VDS. This model is used to study the short-channel behavior of very small MOS transistors on thin SOI. It is found that with very thin SOI, short-channel effects are much reduced compared to bulk MOS transistors and depend on the bulk-substrate bias. The model also shows that it is possible to fabricate submicrometer transistors on very thin SOI even if the channel doping is nearly intrinsic  相似文献   

10.
11.
The two-dimensional (2-D) channel potential and threshold voltage of the silicon-on-insulator (SOI) four-gate transistor (G/sup 4/-FET) are modeled. The 2-D analytical body potential is derived by assuming a parabolic potential variation between the lateral junction-gates and by solving Poisson's equation. The model is used to obtain the surface threshold voltage of the G/sup 4/-FET as a function of the lateral gate bias and for all possible charge conditions at the back interface. The body-potential model is extendable to fully depleted SOI MOSFETs and can serve to depict the charge-sharing and drain-induced barrier-lowering effects in short-channel devices.  相似文献   

12.
This paper demonstrates mesoscopic scale nMOSFET's fabricated by Separation by IMplanted OXygen (SIMOX) technology on a trial basis and describes their explicit quantum-mechanical transport phenomena: enhanced threshold voltage in an extremely thin silicon-on-insulator (SOI) structure and enhanced short-channel effect at room temperature as well as a weak interference (WI) effect at relatively high temperatures (~40 K), which are characterized specifically in extremely thin SOI short-channel devices  相似文献   

13.
This paper reports a concise short-channel effect threshold voltage model using a quasi-2D approach for deep submicrometer double-gate fully-depleted SOI PMOS devices. By considering the hole density at the front and the back channels simultaneously, the analytical threshold voltage model provides an accurate prediction of the short-channel threshold voltage behavior of the deep submicrometer double-gate fully-depleted SOI PMOS devices as verified by 2D simulation results. The analytical short-channel effect threshold voltage model can also be useful for SOI NMOS devices  相似文献   

14.
This letter proposes a new device structure which is called the “partial-ground-plane (PGP) silicon-on-insulator (SOI) MOSFET.” The PGP SOI MOSFET minimizes the short-channel effect (SCE) compared to the conventional single-gate (SG) SOI MOSFET because the gate-induced field in the SOI layer is held high by the PGP region. This results in a lower stand-by leakage current. The PGP SOI MOSFET also shows much better switching performance and extremely high analog performance because of its smaller parasitic capacitance compared to the conventional ground-plane (GP) device. Thus, it is shown that the PGP SOI MOSFET is a promising candidate for future deep-sub-0.1-μm mixed-mode LSIs  相似文献   

15.
Simultaneous measurements of drain and gate currents in short-channel accumulation-mode SOI p-MOSFET'MOs demonstrate that a latch mechanism may occur in these devices and induce an anomalous behavior of the hot-electron gate current: distortion of Ig(V g) curves, hysteresis and excessively high gate current values. 2-D MEDICI simulations based on the lucky-electron model qualitatively reproduce the measurements in the latch regime, and explain the unusual gate current dependence on drain and gate biases. The results are of relevance for reliability and modeling issues  相似文献   

16.
Modern silicon-on-insulator (SOI) technology and 0.1-μm-channel-length complementary metal oxide silicon (CMOS) devices make it possible to fabricate high-performance RF devices by using standard Si ULSI processes. Using the buried oxide layer of an SOI wafer as an etching stopper, we were able to integrate a suspended inductor, with high-inductor resonance-frequency of 19.6 GHz, and high-performance 0.1-μm CMOS devices. Moreover, we experimentally show that this suspended CMOS has acceptable short-channel immunity. Using two-dimensional (2-D) simulation, we clarify that the gate-potential spread sufficiently suppresses the potential shifts, which results in good short-channel characteristics  相似文献   

17.
The mechanism of an anomalous leakage current in mesa-isolated SOI NMOSFETs in the short-channel region was analyzed. The enhanced diffusion of the source-drain impurities was observed in the mesa edge region by Energy Dispersive X-ray Spectroscopy (EDX) analysis. Moreover, using high-resolution TEM observation, it was found that there were no crystalline defects in the edge region. The frequency of leakage currents in short-channel MOSFETs was higher than that of long-channel MOSFETs. The level of leakage current was not changed by the gate voltage and back gate voltage, and the activation energy of the leakage current was almost 0 eV. According to these results, it is concluded that the origin of the anomalous leakage current is the enhanced diffusion of source-drain impurities  相似文献   

18.
在分析了双极型晶体管和场效应晶体管各自的特点和不足后,介绍了一种既具有双极型晶体管较大电流容量和功率输出,又具有场效应晶体管高输入阻抗的电子器件——双极MOS场效应晶体管(BJMOSFET),同时指出体硅BJMOSFET的阳极扩散区与衬底之间存在较大的漏电流,可产生较大的寄生效应。提出了一种新型固体电子器件——基于SOI的BJMOSFET,分析了其工作原理j与体硅BJMOSFET比较,由于SOI技术完整的介质隔离避免了体硅器件中存在的大部分寄生效应,使基于SOI的BJMOSFET在体效应、热载流子效应、寄生电容、短沟道效应和闩锁效应等方面具有更优良的特性。  相似文献   

19.
A comparative review is presented of the current research on the quantum-mechanical and classical Monte Carlo simulation of SOI MOSFETs. A quantum-mechanical simulation method is proposed whereby the energy of transverse channel quantization is represented by a correction term. A newly developed simulation program, called BALSOI, is outlined. A comparison is made between the results of a 2D classical Monte Carlo simulation and those obtained by the quantum-mechanical method. It is observed that the differences are much smaller than what one might expect. This finding is explained as due to the considerable effect of the space charge, which is mainly governed by the classical, longitudinal motion of carriers through the channel. An analytical formula is derived for the effect of channel quantization on the gate–channel capacitance. The strength of tunneling current through a short-channel transistor in the off state is considered.  相似文献   

20.
《Microelectronic Engineering》2007,84(9-10):2121-2124
This work presents the impact of low temperature operation on the characteristics of uniaxially strained fully-depleted SOI nMOSFETs. Devices with channel lengths down to 160 nm were explored in the range 100–380 K. The maximum transconductance in linear region was used to evaluate the mobility enhancement. Besides the increased mobility provided by the strain in comparison to its unstrained SOI counterpart, higher mobility degradation for high values of applied gate voltage was observed. The subthreshold slope and the Drain Induced Barrier Lowering (DIBL) of short-channel devices have been also analyzed, showing that strained devices are more susceptible to the occurrence of short-channel effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号